Пятое поколение эвм. История развития эвм

31.01.2019

ЭВМ пятого поколения - это ЭВМ будущего. Программа разработки, так называемого, пятого поколения ЭВМ была принята в Японии в 1982 г. Предполагалось, что к 1991 г. будут созданы принципиально новые компьютеры, ориентированные на решение задач искусственного интеллекта. С помощью языка Пролог и новшеств в конструкции компьютеров планировалось вплотную подойти к решению одной из основных задач этой ветви компьютерной науки - задачи хранения и обработки знаний. Коротко говоря, для компьютеров пятого поколения не пришлось бы писать программ, а достаточно было бы объяснить на "почти естественном" языке, что от них требуется.

Предполагается, что их элементной базой будут служить не СБИС, а созданные на их базе устройства с элементами искусственного интеллекта. Для увеличения памяти и быстродействия будут использоваться достижения оптоэлектроники и биопроцессоры.

На ЭВМ пятого поколения ставятся совершенно другие задачи, нежели при разработке всех прежних ЭВМ. Если перед разработчиками ЭВМ с I по IV поколений стояли такие задачи, как увеличение производительности в области числовых расчётов, достижение большой ёмкости памяти, то основной задачей разработчиков ЭВМ V поколения является создание искусственного интеллекта машины (возможность делать логические выводы из представленных фактов),

развитие "интеллектуализации" компьютеров - устранения барьера между человеком и компьютером.

ТЕХНИКА БЕЗОПАСНОСТИ

Перед началом работы следует убедиться в исправности электропровод­ки, выключателей, штепсельных розеток, при помощи которых оборудование включается в сеть, наличии заземления компьютера и его работоспособности. Недопустимо использование некачественных и изношенных компонентов в си­стеме электроснабжения, а также их суррогатных заменителей: розеток, удли­нителей, переходников, тройников.

Недопустимо самостоятельно модифицировать розетки для подключения вилок, соответствующих иным стандартам. Электрические контакты розеток не должны испытывать механических нагрузок, связанных с подключением мас­сивных компонентов (адаптеров, тройников и т. п.). Все питающие кабели и провода должны располагаться с задней стороны компьютера и периферийных устройств. Их размещение в рабочей зоне пользователя недопустимо.

Монитор должен быть установлен прямо перед пользователем и не тре­бовать поворота головы или корпуса тела. Экран видеомонитора должен нахо­диться от глаз пользователя на расстоянии 600 - 700 мм, но не ближе500 мм с учетом размеров алфавитно-цифровых знаков и символов.

Рабочий стол и посадочное место должны иметь такую высоту, чтобы уровень глаз пользователя находился чуть выше центра монитора. На экран монитора следует смотреть сверху вниз, а не наоборот. Даже кратковременная работа с монитором, установленным слишком высоко, приводит к утомлению шейных отделов позвоночника.

Если при правильной установке монитора относительно уровня глаз вы­ясняется, что ноги пользователя не могут свободно покоиться на полу, следует установить подставку для ног, желательно наклонную. Если ноги не имеют надежной опоры, это непременно ведет к нарушению осанки и утомлению по­звоночника. Удобно, когда компьютерная мебель (стол и рабочее кресло) име­ют средства для регулировки по высоте. В этом случае проще добиться опти­мального положения.

Клавиатуру следует располагать на поверхности стола на расстоянии 100 - 300 мм от края, обращенного к пользователю, или на специальной регулируе­мой по высоте рабочей поверхности, отделенной от основной столешницы. Клавиатура должна быть расположена на такой высоте, чтобы пальцы рук рас­полагались на ней свободно, без напряжения, а угол между плечом и предпле­чьем составлял 100° - 110°. Для работы рекомендуется использовать специ­альные компьютерные столы, имеющие выдвижные полочки для клавиатуры.

Влияние сети интернет на развитие вычислительной техники в 2000г. и в наше время.

Пятое поколение ЭВМ

ЭВМ пятого поколения – это ЭВМ будущего. Программа разработки, так называемого, пятого поколения ЭВМ была принята в Японии в 1982 г. Предполагалось, что к 1991 г. будут созданы принципиально новые компьютеры, ориентированные на решение задач искусственного интеллекта. С помощью языка Пролог и новшеств в конструкции компьютеров планировалось вплотную подойти к решению одной из основных задач этой ветви компьютерной науки – задачи хранения и обработки знаний. Коротко говоря, для компьютеров пятого поколения не пришлось бы писать программ, а достаточно было бы объяснить на "почти естественном" языке, что от них требуется.

Предполагается, что их элементной базой будут служить не СБИС, а созданные на их базе устройства с элементами искусственного интеллекта . Для увеличения памяти и быстродействия будут использоваться достижения оптоэлектроники и биопроцессоры .

Для ЭВМ пятого поколения ставятся совершенно другие задачи, нежели при разработки всех прежних ЭВМ. Если перед разработчиками ЭВМ с I по IV поколений стояли такие задачи, как увеличение производительности в области числовых расчётов, достижение большой ёмкости памяти, то основной задачей разработчиков ЭВМ V поколения является создание искусственного интеллекта машины (возможность делать логические выводы из представленных фактов), развитие "интеллектуализации" компьютеров – устранения барьера между человеком и компьютером .

К сожалению, японский проект ЭВМ пятого поколения повторил трагическую судьбу ранних исследований в области искусственного интеллекта. Более 50-ти миллиардов йен инвестиций были потрачены впустую, проект прекращен, а разработанные устройства по производительности оказались не выше массовых систем того времени. Однако, проведенные в ходе проекта исследования и накопленный опыт по методам представления знаний и параллельного логического вывода сильно помогли прогрессу в области систем искусственного интеллекта в целом.

Уже сейчас компьютеры способны воспринимать информацию с рукописного или печатного текста, с бланков, с человеческого голоса, узнавать пользователя по голосу, осуществлять перевод с одного языка на другой. Это позволяет общаться с компьютерами всем пользователям, даже тем, кто не имеет специальных знаний в этой области. Так же смартфоны, решающие конкретный спектр задач своего владельца

Многие успехи, которых достиг искусственный интеллект, используют в промышленности и деловом мире. Экспертные системы и нейронные сети эффективно используются для задач классификации (фильтрация СПАМа, категоризация текста и т.д.). Добросовестно служат человеку генетические алгоритмы (используются, например, для оптимизации портфелей в инвестиционной деятельности), робототехника (промышленность, производство, быт – везде она приложила свою кибернетическую руку), а также многоагентные системы. Не дремлют и другие направления искусственного интеллекта, например распределенное представление знаний и решение задач в интернете: благодаря им в ближайшие несколько лет можно ждать революции в целом ряде областей человеческой деятельности.


Так же большое значение приобретет информационная безопасность, особенно в части одной из ее важнейших составляющих - идентификации пользователей. Первое решение в этой области -- символьные пароли, примитивные, легко забываемые и легко «взламываемые», еще в первой половине XXI века станут частью истории. Каждый пользователь будет идентифицироваться с помощью биометрической информации.

Биометрический контроль доступа - это автоматизированный метод, с помощью которого путем проверки (исследования) уникальных физиологических особенностей или поведенческих характеристик человека осуществляется идентификация личности. Физиологические особенности (папиллярный узор пальца, геометрия ладони, черты лица или рисунок (модель) радужной оболочки глаза и т. п.) являются постоянными физическими характеристиками человека. Данный тип измерений (проверки) практически неизменен так же, как и сами физиологические характеристики. В отличие от традиционного пароля, биометрическая характеристика не может быть забыта, потеряна или украдена. Поскольку биометрические характеристики каждой отдельной личности уникальны, они могут использоваться для предотвращения воровства или мошенничества с большой степенью надежности

На тему: Пятое поколение ЭВМ

Выполнил студент группы ТМ-11:

Сергеев Н.Ю.

Проверила:Абкаримова Г.Т.

Благовещенск - 2014

Пятое поколение ЭВМ

ЭВМ пятого поколения - это ЭВМ будущего. В 1982 г в Японии была принята программа разработки, пятого поколения ЭВМ. Предполагалось, что к 1991 г. будут созданы ориентированные на решение задач принципиально новые компьютеры, искусственного интеллекта. С помощью языка новшеств и пролог в устройстве компьютеров планировалось вплотную подойти к решению одной из основных задач этой ветви компьютерной науки - задачи обработки и хранения знаний. Коротко говоря, для компьютеров пятого поколения, не пришлось бы писать программ, а всего лишь достаточно было бы объяснить на "почти естественном" языке, что от них требуется.

Предполагается, что их элементной базой будут служить не СБИС, а созданные на их базе устройства с элементами искусственного интеллекта. Для увеличения быстродействия и памяти будут использоваться достижения биопроцессоры и оптоэлектроники.

Для ЭВМ пятого поколения ставятся совершенно другие задачи, нежели при разработке всех прежних ЭВМ. Если перед разработчиками ЭВМ с первого по четвертое поколение стояли такие задачи, как достижение большой ёмкости памяти, увеличение производительности в области числовых расчётов, то основной задачей разработчиков ЭВМ пятого поколения является создание искусственного интеллекта машины, то есть, возможность делать логические выводы из представленных фактов, развитие "интеллектуализации" компьютеров, устранения барьера между компьютером и человеком.

Накопленный опыт и проведенные в ходе проекта исследования по методам параллельного логического вывода и представления знаний сильно помогли прогрессу в области систем искусственного интеллекта в целом.

Уже сейчас компьютеры способны воспринимать информацию с печатного или рукописного текста, с человеческого голоса, с бланков, осуществлять перевод с одного языка на другой, узнавать пользователя по голосу. Это дает возможность общаться с компьютерами всем пользователям, даже тем, кто не имеет специальных знаний в этой области.

Многие успехи, которых достиг искусственный интеллект, используют в деловом мире и промышленности. Нейронные сети и экспертные системы эффективно используются для задач классификации (категоризация текста, фильтрация СПАМа, и т.д.). Добросовестно служат человеку генетические алгоритмы, используются, например, для оптимизации портфелей в инвестиционной деятельности, промышленность, робототехника, также многоагентные системы. Не дремлют и другие направления искусственного интеллекта, например, решение задач в интернете и распределенное представление знаний.

Зарождается в недрах четвертого поколения и в значительной мере определяется результатами работы японского Комитета научных исследований в области ЭВМ, опубликованными в 1981г. Согласно этому проекту ЭВМ и вычислительные системы пятого поколения кроме надежности и высокой производительности при более низкой стоимости, вполне обеспечиваемые СБИС и др. новейшими технологиями, должны удовлетворять следующим качественно новым функциональным требованиям:

Обеспечить диалоговой обработки информации с использованием естественных языков; возможности обучаемости, логических выводов и ассоциативных построений; простоту применения ЭВМ путем реализации систем ввода или вывода информации голосом;

Упростить процесс создания программных средств путем автоматизации синтеза программ по спецификациям исходных требований на естественных языках

Улучшить эксплуатационные качества и основные характеристики вычислительной техники для удовлетворения различных социальных задач, улучшить соотношения результатов и затрат, легкости, компактности, быстродействия ЭВМ; обеспечить их разнообразие, надежность в эксплуатации и высокую адаптируемость к приложениям.

Учитывая сложность осуществления установленных перед пятым поколением задач, совершенно вероятно разбиение его на более обозримые и лучше ощущаемые этапы, первый из которых во многом реализован в рамках настоящего четвертого поколения.

Потребность в более быстрых, универсальных и дешевых процессорах вынуждает производителей постоянно наращивать число транзисторов в них. И произойдет это где-то между 2010 и 2020 годами. По мере приближения к физическому пределу архитектура компьютеров становится все более изощренной, возрастает стоимость проектирования, тестирования и изготовления чипов. Таким образом, этап эволюционного развития рано или поздно сменится революционными изменениями.

В результате гонки наращивания производительности возникает множество проблем. Концентрация энергии в нынешних микропроцессорах безмерно значительна. Нынешние стратегии рассеяния образующегося тепла, такие как избирательная активация или снижение питающего напряжения только нужных частей в микроцепях малоэффективны, если не применять активного охлаждения.

Изолирующие слои стали тоньше с уменьшением размеров транзисторов, а это значит, что их надежность снизилась, из за того, что электроны могут проникать через тонкие изоляторы.

На сегодняшний день основное условие повышения производительности процессоров - методы параллелизма. Как известно, микропроцессор обрабатывает последовательность инструкций,которые составляют ту или иную программу. Если организовать параллельное (то есть одновременное) выполнение инструкций, общая производительность существенно вырастет. Решается проблема параллелизма методами конвейеризации вычислений, применением предсказанием ветвлений и суперскалярной архитектуры.

Многоядерная архитектура подразумевает интегрирование нескольких простых микропроцессорных ядер на одном чипе. Каждое ядро выполняет свой поток инструкций. Каждое микропроцессорное ядро значительно проще, чем ядро многопотокового процессора, что упрощает тестирование и проектирование чипа. Но между тем усугубляется проблема доступа к памяти, становится необходима замена компиляторов.

Многопотоковый процессор. Данные процессоры по архитектуре напоминают трассирующие: весь чип делится на процессорные элементы, напоминающие суперскалярный микропроцессор. В отличие от трассирующего процессора, здесь каждый элемент обрабатывает инструкции разнообразных потоков в течение одного такта, чем достигается параллелизм на уровне потоков. Конечно, каждый поток имеет свой набор регистров и программный счетчик.

"Плиточная" архитектура. Сторонники считают, что ПО должно компилироваться прямо в "железе", так как это даст максимальный параллелизм.

Процессор в данном случае состоит из множества "плиток" (tiles), каждая из которых имеет собственное ОЗУ и связана с другими "плитками" в своеобразную решетку, узлы которой можно включать и отключать.

При многоэтажной архитектуре речь идет не о логической, а о физической структуре. Идея состоит в том, что чипы должны содержать вертикальные "штабеля" микроцепей, изготовленных по технологии тонкопленочных транзисторов, заимствованной из производства TFT-дисплеев. Идея "трехмерных" чипов уже реализована в виде работающих образцов восьмиэтажных микросхем памяти. Совершенно вероятно, что она позволима и для микропроцессоров, и в недалеком будущем, все микрочипы будут наращиваться, не только горизонтально, но и вертикально.

Пятое поколение создано на основе сверхбольших интегральных схем (СБИС), которые отличаются колоссальной плотностью размещения логических элементов на кристалле.

Предполагается, что в будущем широко распространится ввод информации в ЭВМ с голоса, общения с машиной на естественном языке, машинное осязание, машинное зрение, робототехнических устройств и создание интеллектуальных роботов.

Заключение

В нашем веке современному человеку трудно представить свою жизнь без компьютера и других электронно-вычислительных машин (ЭВМ). Если раньше люди использовали компьютеры для упрощения своей жизни, то на сегодняшний день потребности в нем самые разные.

Персональный компьютер во многом изменил свое отношение человечества к вычислительным ресурсам. С каждой новой моделью ПК, человек все больше и больше перекладывает повседневные функции на плечи машин, начиная от простых математических вычислений и заканчивая созданием отчета или сложным проектированием. Во второй половине ХХ века компьютеры могли позволить себе только крупные компании, не только из-за своей дороговизны, но и из-за внушительных размеров. Именно поэтому компании, изготовлявшие компьютерную технику, всегда стремились к удешевлению и минимализму своей продукции. В результате развития микроминиатюризации и микросхем ЭВМ может размещаться на обычном письменном столе. На сегодняшний день компьютер может позволить себе любой человек. Размеры компьютеров стали настолько малыми, что его можно даже поместить в карман.

Каждое следующее поколение ЭВМ, по сравнению с предыдущими, имеет существенно лучшие характеристики. Так, емкость и производительность ЭВМ всех запоминающих устройств увеличивается, как правило, больше чем на порядок.

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

хорошую работу на сайт">

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Подобные документы

    Механические средства вычислений. Электромеханические вычислительные машины, электронные лампы. Четыре поколения развития ЭВМ, характеристика их особенностей. Сверхбольшие интегральные схемы (СБИС). ЭВМ четвертого поколения. Проект ЭВМ пятого поколения.

    реферат , добавлен 13.03.2011

    Виртуальная реальность: две модели. Компьютерная виртуальная реальность: две стороны. Возможна ли тотальная компьютерная виртуальная реальность? Компьютерная виртуальная реальность и общество. Критерии различения человека свободного и человека зависимого.

    реферат , добавлен 27.05.2005

    Ручной этап развития вычислительной техники. Позиционная система счисления. Развитие механики в XVII веке. Электромеханический этап развития вычислительной техники. Компьютеры пятого поколения. Параметры и отличительные особенности суперкомпьютера.

    курсовая работа , добавлен 18.04.2012

    Понятие, устройство и применение абака. Особенности механических вычислительных машин: линейка Уатта, машина Паскаля, арифмометр, аналитическая машина Бэббиджа. Обзор первых четырех поколений ЭВМ. Сущность машин пятого поколения, пример и параметры.

    презентация , добавлен 22.12.2011

    Ранние приспособления и устройства для счета. Появление перфокарт, первые программируемые машины, настольные калькуляторы. Работы Джона Фон Неймана по теории вычислительных машин. История создания и развития, поколения электронно-вычислительных машин.

    реферат , добавлен 01.04.2014

    Первые машины вычисления. Осуществление прорыва в области вычислительной техники. Процессоры пятого поколения. Развитие микропроцессоров Intel Pentium и Intel Pro. Языки программирования высокого уровня. Внутренняя оперативная память процессора.

    реферат , добавлен 07.10.2013

    Примеры счетно-решающих устройств до появления ЭВМ. Суммирующая машина Паскаля. Счетная машина Готфрида Лейбница. "Аналитическая машина" Чарльза Бэббиджа, развитие вычислительной техники после ее создания. Поколения электронно-вычислительных машин.