Механический период развития вычислительной техники. Вычислительная машина. История развития вычислительной техники

02.02.2019

История вычислительных машин

Первым устройством, предназначенным для облегчения вычислений, стали счеты. С помощью костяшек счетов можно было совершать операции сложения и вычитания и несложные умножения. Однако счеты совершенно непригодны для операций над нецелыми числами и не могут производить сложных операций. А потребности человечества в вычислениях все увеличивались.

Однако используются не только сканирование биоэлектрических сигналов в мозге, но также сканирование мышечных сокращений и ощущение движений глаз, «написание глаз» или движение частей тела. Однако они не используются для синтеза речи, а для управления ключами или компьютерной мышью соответственно.

Адам Солтис описывает в своей статье, среди других двух таких устройств, которые в настоящее время коммерчески используются в основном для игры в компьютерные игры. Игрокам даже не нужно было прикасаться к клавиатуре, у них была только мышь, чтобы повернуть глаза. Все остальное - все, что они могли придумать.

В 1642 г. французский математик Блез Паскаль сконструировал первую механическую счетную машину «Пас-калина», которая могла механически выполнять сложение чисел. В 1673 г. Готфрид Вильгельм Лейбниц сконструировал арифмометр, позволяющий механически выполнять четыре арифметических действия. Начиная с XIX в. арифмометры получили очень широкое применение. На них выполняли даже очень сложные расчеты, например расчеты баллистических таблиц для артиллерийских стрельб. Существовала и специальная профессия - счетчик - человек, работающий с арифмометром, быстро и точно соблюдающий определенную последовательность инструкций (такую последовательность инструкций впоследствии стали называть программой). Но многие расчеты производились очень медленно - даже десятки счетчиков должны были работать по нескольку недель и месяцев. Причина проста: при таких расчетах выбор выполняемых действий и запись результатов производились человеком, а скорость его работы весьма ограничена.

Устройство также можно приобрести у нас и рекламировать в различных интернет-магазинах. Он работает по принципу измерения биометрических сигналов с помощью оголовья с датчиками, которые обрабатывают устройство для обработки сигналов, и в соответствии с вашими настройками, выполненными во время калибровки, выполняет действие. Стрельба, движение, прыжки, обмен оружия и т.д. могут контролироваться мозгом. Вы можете добиться гораздо лучших результатов и рефлексов.

Надежная обработка более совершенных технологий требует специальных навыков и обучения, чтобы помочь вам с помощью простых мини-игр прямо в программном обеспечении. Устройство в виде футуристического шлема основывается на аналогичном принципе выше, но оно намного сложнее и может реагировать на прямые мысли и чувства пользователя вместо того, чтобы превращать их в импульсы, заменяющие нажатия клавиш. Устройство уже продается.

Еще в первой половине XIX в. английский математик Чарльз Бэббидж попытался построить универсальное вычислительное устройство, то есть компьютер. Бэббидж называл его аналитической машиной. Именно Бэббидл: впервые додумался до того, что компьютер должен содержать память и управляться с помощью программы. Бэббидж дател построить свой компьютер как механическое устройство, а программы собирался задавать посредством перфокарт - карт из плотной бумаги с информацией, наносимой с помощью отверстий (они в то время уже широко применялись в ткы.ких станках). Однако довести до конца эту работу Бэббидж не смог: она оказалась слишком сложной для техники того иремени.

Вы можете контролировать движение инвалидной коляски с помощью лицевой улыбки. Это зависит от индивидуальной настройки - улыбка может означать движение вперед, закрытие правого глаза, поворот вправо и т.д. устройство также может ощущать ваши эмоции, что может привести, например, к влиянию на отображаемый спектр цветов и фоновой музыки. Для фэнтезийных игр это устройство будет буквально революционным - просто подумайте, и ваш персонаж на экране будет делать именно то, что вы хотите. Можно ли поднять камень силой воли и бросить его в стиле рыцаря-джедая?

Первым реализовал идею перфокарт Холлзрит. Он изобрел машину для обработки результатов переписи населения. В своей машине он впервые применил электричество для расчетов.

В 40-х годах XX в. сразу несколько rpyni исследователей повторили попытку Бэббиджа на основе техники XX в. - электромеханических реле. Некоторые из этих исследователей ничего не знали о работах Бэббиджа и перготкрыли его идеи заново. Первым из них был немецкий ивкенер Конрад Цузе, который в 1941 г. построил небольшой бомпьютер на основе нескольких электромеханических реле. Но из-за войны работы Цузе не были опубликованы. А в CEIA в 1943 г. на одном из предприятий фирмы IBM (International Business Machines Corporation) американец Говард Эйкея создал более мощный компьютер под названием «Марк-1». Он уже проводил вычисления в сотни раз быстрее, чем вручную (с помощью арифмометра) и реально использовался для вое яых расчетов. В нем использовалось сочетание электрических с чгналов и механических приводов. «Марк-1» имел размеры 15x2,5 м и содержал 750 000 деталей, он мог перемножить два 23-разрядных числа за 4 с.

Он рассматривает эту технологию как способ управления компьютером, который может полностью заменить клавиатуру и мышь. Разумеется, необходимо понимать, что некоторые из упомянутых здесь функций носят рекламный характер и должны быть критическими. С другой стороны, следует точно ответить на следующие вопросы.

Вопросы теоретики и практики письма

В какой степени это возможно в настоящее время - сколько функций, букв, ключей, терминов, фраз или предложений может быть в репертуаре нашей технологии «умной печати»? Может ли «умный ввод» успешно интегрироваться в существующие способы написания, по крайней мере, в качестве дополнительного устройства? Устройство для записи, контроля и подсчета для создания, передачи и письма буквенно-цифровых символов.

  • Как быстро можно «умнить»?
  • Насколько это точно?
  • Десятилетний опыт и опыт в Карловском университете и некрополе в Абусире.
  • Чаплин, Чарльз: Мое резюме.
  • Прага, Управление изобретений и открытий Контролируйте мозговые игры.
Это была бы сатира для прогресса.

Однако электромеханические реле работают весьма медленно и недостаточно надежно. Поэтому начик;ш с 1943 г. в США группа специалистов под руководством Длона Мочли и Преспера Экерта начала конструировать компьютер ENIAC на основе электронных ламп. Созданный ими компьютер работал в тысячу раз быстрее, чем «Марк-1?. Но обнаружилось, что большую часть времени этот компьютер простаивал, вел> для задания метода расчетов (программы) в этом компьютере приходилось в течение нескольких часов или даже нескольких дней подсоединять нужным образом провода. А сам расчет после этого мог занять всего лишь несколько минут или даже секунд.

Чтобы упростить и ускорить процесс задания программ, Мочли и Экерт стали конструировать новый компьютер, который мог бы хранить программу в своей памяти. В 1945 г. к работе был привлечен знаменитый математик Джон фон Нейман, который подготовил доклад об этом компьютере. Доклад был разослан многим ученым и стал широко известен, поскольку в нем фон Нейман ясно и просто сформулировал общие принципы функционирования компьютеров, т. е. универсальных вычислительных устройств. И до сих пор подавляющее большинство компьютеров сделано в соответствии с теми принципами, которые изложил в своем докладе в (945 г. Джон фон Нейман. Первый компьютер, в котором были воплощены принципы фон Неймана, был построен в 1949 г. английским исследователем Морисом Уилксом.

Разработка первой электронной серийной машины UNIVAC (Universal Automatic Computer) начат;, примерно в 1947 г. Экертом и Мочли, основавшими в декабре того же года фирму ECKERT-MAUCHLI. Первый образец машины (UNIVAC-1) был построен для бюро переписи США и пущен в эксплуатацию весной 1951 г. Синхронная, последовательного действия вычислительная машина UNIVAC-1 создана на базе ЭВМ ENIAC и EDVAC. Работала она с тактовой частотой 2.25 МГц И содержала около 5000 электронных ламп. Внутреннее запоминающее устройство с емкостью 1000 12-разрядных десятичных чисел было выполнено на 100 ртутных линиях задержки.

Вскоре после ввода в эксплуатацию машины UNIVAC-1 ее разработчики выдвинули идею автоматического программирования. Она сводилась к тому, чтобы машина сама могла подготавливать такую последовательность команд, которая нужна для решения данной задачи.

Сильным сдерживающим фактором в работе конструкторов ЭВМ начала 1950-х годов было отсутствие быстродействующей памяти. По словам одного из пионеров вычислительной техники Д. Эккерта, «архитектура машины определяется памятью». Исследователи сосредоточили свои усилия на запоминающих свойствах ферритовых колец, нанизанных на проволочные матрицы.

В 1951 г. Дж. Форрестер опубликовал статью о применении магнитных сердечников для хранения цифровой информации. В машине «Whirlwind-1 о впервые была применена память на магнитных сердечниках. Она представляла собой 2 куба 32 х 32 х 17 с сердечниками, которые обеспечивали хранение 2048 слов для 16-разрядных двоичных чисел с одним разрядом контроля на четность.

В разработку электронных компьютеров включилась фирма IBM. В 1952 г. она выпустила свой первый промышленный электронный компьютер IBM 701, который представлял собой синхронную ЭВМ параллельного действия, содержащую 4000 электронных ламп и 12 000 германиевых диодов. Усовершенствованный вариант машины IBM 704 отличался высокой скоростью работы, в ней использовались индексные регистры и данные представлялись в форме с плавающей запятой.

После ЭВМ IBM 704 была выпущена машина IBM 709, которая в архитектурном плане приближалась к машинам второго и третьего поколений. В этой машине впервые была применена косвенная адресация и впервые появились каналы ввода-вывода.

В 1956 г. фирмой IBM были разработаны плавающие магнитные головки на воздушной подушке. Изобретение их позволило создать новый тип памяти - дисковые запоминаю-1 щие устройства (ЗУ), значимость которых была в полной мере оценена в последующие десятилетия развития вычислительной техники. Первые ЗУ на дисках появились в машинах IBM 305 и RAMAC. Последняя имела пакет, состоявший из 50 металлических дисков с магнитным покрытием, которые вращались со скоростью 12 000 об./мин. На поверхности диска размещалось 100 дорожек для записи данных, по 10 000 знаков каждая.

Вслед за первым серийным компьютером UNIVAC-1 фирма Remington-Rand в 1952 г. выпустила ЭВМ UNIVAC-1103, которая работала в 50 раз быстрее. Позже в компьютере UNIVAC-1103 впервые были применены программные прерывания.

Сотрудники фирмы Rernington-Rand использовали алгебраическую форму записи алгоритмов под названием «Short Code» (пррвый интерпретатор, созданный R 1949 г. Джоном Мочли). Кроме того, необходимо отметить офицера ВМФ США и руководителя группы программистов, в то время капитана (в дальнейшем единственная в ВМФ женщина-адмирал) Грейс Хоппер, которая разработала первую программу-компилятор. Кстати, термин «компилятор» впервые ввела Г. Хоппер в 1951 г. Эта компилирующая программа производила трансляцию на машинный язык всей программы, записанной в удобной для обработки алгебраической форме. Г. Хоппер принадлежит также авторство термина «баг» в применении к компьютерам. Как-то через открытое окно в лабораторию залетел жук (по-английски - bug), который, сев на контакты, замкнул их, чем вызвал серьезную неисправность в работе машины. Обгоревший жук был подклеен в административный журнал, где фиксировались различные неисправности. Так был задокументирован первый баг в компьютерах.

Фирма IBM сделала первые шаги в области автоматизации программирования, создав в 1953 г. для машины IBM 701 «Систему быстрого кодирования». В СССР А. А. Ляпунов предложил один из первых языков программирования. В 1957 г. группа под руководством Д. Бэкуса завершила работу над ставшим впоследствии популярным первым языком программирования высокого уровня, получившим название ФОРТРАН. Язык, реализованный впервые на ЭВМ IBM 704, способствовал расширению сферы применения компьютеров.

В Великобритании в июле 1951 г. на конференции в Манчестерском университете М. Уилкс представил доклад «Наилучший метод конструирования автоматической машины», который стал пионерской работой по основам микропрограммирования. Предложенный им метод проектирования устройств управления нашел широкое применение.

Свою идею микропрограммирования М. Уилкс реализовал в 1957 г. при создании машины EDSAC-2. М. Уилкс совместно с Д. Уиллером и С. Гиллом в 1951 г. написали первый учебник по программированию «Составление программ для электронных счетных машин».

В 1956 г. фирма Ferranti выпустила ЭВМ «Pegasus», в которой впервые нашла воплощение концепция регистров общего назначения (РОН). С появлением РОН было устранено различие между индексными регистрами и аккумуляторами, и в распоряжении программиста оказался не один, а несколько регистров-аккумуляторов

В практике повседневной жизни человеку приходится решать различные проблемы или задачи, многие из которых возникают в неизменном виде и достаточно регулярно. Появляется потребность в разработке типовых подходов и правил решения, часто повторяющихся проблем и задач. Набор правил, направленный на решение задачи и состоящий в выполнении некоторых простых, типизированных действий, называется алгоритмом. Однако для успешного решения задачи кроме алгоритма необходим ещё и его исполнитель. Достаточно давно возникла идея поручить выполнение алгоритма, если это возможно, машине. Нам, живущим в ХХI веке, такие машины хорошо известны: всевозможные бытовые устройства (стиральные машины, кухонные комбайны), устройства связи, машины (роботы) промышленного производства, работающие на конвейере и т.п. Однако, исторически первыми появились устройства для выполнения вычислительных алгоритмов, и это случилось достаточно давно.

Одним из первых известных устройств, предназначенных для проведения вычислений, является абак, что означает «счётная доска». Предполагают, что абак впервые появился в Древнем Вавилоне около 3 тыс. до н. э. Первоначально он представлял собой доску, разграфлённую на полосы или со сделанными углублениями. Счётные марки (камешки, косточки) передвигались по линиям или углублениям. В 5 в. до н. э. в Египте вместо линий и углублений стали использовать палочки и проволоку с нанизанными камешками. На этом этапе абак использовался скорее для запоминания промежуточных результатов в цепочке вычислений. Начиная с IV в. до н.э., абак использовался для выполнения арифметических вычислений в древнегреческой и древнеримской цивилизациях. В России аналогом абака явились «русские счёты». Они появились в XVI веке и применяются до настоящего времени.

Следующий этап развития характеризуется созданием вычислительных устройств на механической основе с применением шестерней. Среди разработчиков и создателей таких машин следует отметить Блеза Паскаля, Готфрида Лейбница, Чарльза Бэббиджа. Каждый из них внес в процесс развития вычислительной техники свои оригинальные идеи, которые используются и в современных ЭВМ.

Первую суммирующую 8–ми разрядную машину построил Блез Паскаль (1641-1645). Он наладил производство таких машин. Каждой цифре от 0 до 9 соответствовал угол поворота счётного колеса. Всего было восемь таких колес. Операция умножения заменялась многократным сложением. Вклад Паскаля в развитие вычислительной техники, не утративший своего значения, состоял в том, что он первым догадался заменить операцию вычитания сложением с дополнением вычитаемого. Этот способ выполнения вычитания и сейчас используется в современных процессорах.


Лейбниц (около 1673 г.) создал первый арифмометр, который выполнял все четыре арифметических действия. Он первым предложил выполнять вычисления в двоичной системе счисления (на уровне проекта). Авторство в создании двоичной системы также приписывается Лейбницу. Двоичное представление данных и двоичная арифметика лежат в основе работы современных компьютеров. Арифмометр Лейбница был более «продвинутым» устройством по сравнению с машиной Паскаля. Вклад Лейбница в развитие ВТ высоко оценил Норберт Винер, один из идейных разработчиков первой ЭВМ.

Следующий значительный шаг в деле создания вычислительных машин был сделан Чарльзом Бэббиджем в начале XIX века. Конструктивно машина Бэббиджа аналогична современным ЭВМ. Она содержала следующие элементы:

· «Склад» для хранения чисел (устройство хранения данных в современных ЭВМ).

· «Фабрика» – вычислительное устройство (ВУ), выполняющее операции над числами (в современных ЭВМ ему соответствует процессор).

· Устройство управления (УУ) - также присутствует в современных ЭВМ.

· Устройство ввода-вывода (УВВ) данных – на печать и на перфокарты.

Перфокарта была изобретена Жозефом Жаккардом в 1801 г. и применялась для управления работой ткацкого станка. Позднее Герман Холлерит применил перфокарту для обработки данных по переписи населения в 1890 г. Эти работы привели в дальнейшем к созданию корпорации IBM. Перфокарты использовались в практике программирования для ввода программ и данных в ЭВМ вплоть до 80-х годов XX века.

Полностью реализовать свои идеи по созданию вычислительной машины Бэббиджу не позволил технологический уровень того времени. Передовыми достижением для того времени явились способ ввода алгоритма в машину с помощью перфокарт и сама возможность изменять алгоритм работы машины. Тогда же впервые возникла проблема составления программ и впервые возникла идея создания библиотеки программ для вычислительной машины. Рядом с Бэббиджем появляется ещё один исторически важный персонаж – леди Ада Лавлейс (1815–1852) , дочь Байрона. Она занималась разработкой алгоритмов и программ для машины Бэббиджа и считается первым в мире программистом. Ей приписывают создание алгоритма вычисления чисел Бернулли и изобретение команды для разветвления вычислительного процесса. В 1840 г. Бэббидж ездил по приглашению итальянских математиков в Турин, где читал лекции о своей машине. Был издан конспект этих лекций на французском языке. Позже Ада Лавлейс перевела эти лекции на английский язык, дополнив их комментариями, которые по своему объёму превосходили исходный текст. В комментариях Ада сделала описание машины Бэббиджа и инструкции по программированию к ней. Это были первые в мире программы, поэтому Аду Лавлейс справедливо считают первым программистом. В восьмидесятых годах XX века был разработан язык программирования, который назвали «Ада», в честь Ады Лавлейс.

Следующий этап в истории создания ЭВМ связан с именем Конрада Цузе (1910 - 1995). Он считается создателем первой работающей программируемой ЭВМ и первого языка программирования высокого уровня.

К. Цузе проектировал самолёты в компании Henschel Aircraft. Ему приходилось выполнять огромные объёмы вычислений. Цузе решил автоматизировать процесс вычислений. В 1934 г. Цузе придумал модель автоматического калькулятора, которая состояла из УУ, ВУ, памяти и полностью совпадала с архитектурой современных компьютеров. Он сформулировал шесть принципов работы компьютеров:

1. должна использоваться двоичная система счисления;

2. должны использоваться устройства, работающие по принципу да/нет;

3. должен быть полностью автоматизирован процесс работы ВУ;

4. процесс вычислений должен управляться программно;

5. необходима поддержка арифметики с плавающей запятой, а не только с фиксированной;

6. следует использовать память большой ёмкости.

В период с 1938 по 1944 г. Цузе создал три модели вычислительных машин Z1, Z2, Z3. Модель Z1представляла собой двоичное механическое вычислительное устройство с электрическим приводом и возможностью программирования при помощи клавиатуры. Результат вычислений отображался на ламповой панели. Это была экспериментальная модель. Машина Z2 считывала инструкции с перфорированной 35-миллиметровой киноплёнки. Модель Z3 сегодня многие считают первым, реально действовавшим программируемым компьютером. Порядок вычислений теперь можно было определять заранее, однако условные переходы и циклы отсутствовали. В сентябре 1950 года Цузе сконструировал машину Z4. В то время Z4 был единственным работающим компьютером в Европе и первым компьютером в мире, который был продан. Цузе первым разработал язык программирования, не привязанный к архитектуре ЭВМ (1966 г).

Важнейшей вехой в развитии вычислительной техники явилось создание в Пенсильванском университете первой ЭВМ под руководством Дж. Маучли и Преспера Эккерта. Проект стартовал в 1943 г. при поддержке Лаборатории баллистических исследований для расчётов таблиц стрельбы армии США, а уже в 1946 (1945) была продемонстрирована ЭВМ ENIAC (от Electronic Numerical Integrator and Automatic Calculator). Это был первый широкомасштабный, электронный, цифровой компьютер, способный быть перепрограммированным для решения целого диапазона задач. Его отдельные характеристики: потребляемая мощность - 150 кВт., вычислительная мощность - 300 операций умножения или 5000 операций сложения в секунду, вес - 27 тонн. Вычисления производились в десятичной системе.

Разработка второй ЭВМ началось ещё до окончательного запуска ENIAC. В группу разработчиков был включён Дж. фон Нейман. ЭВМ известна под аббревиатурой EDVAC (Electronic Discrete Variable Automatic Computer). В отличие от ENIAC, это был первый компьютер с хранимой в памяти программой, который работал в двоичной, а не десятичной системе счисления. Приведём основные технические характеристики EDVAC.

Компьютер располагал встроенными операциями сложения, вычитания и умножения, а также программной реализацией деления; объём памяти составлял 5,5 килобайт в современной терминологии. Основные конструктивные компоненты EDVAC:

· устройство чтения/записи с магнитной ленты;

· контролирующее устройство с осциллографом;

· устройство-диспетчер, принимающее инструкции от контролирующего устройства и из памяти и направляющее их в другие устройства;

· вычислительное устройство, выполняющее за раз одну арифметическую операцию над парой чисел и посылающее результат в память;

· таймер;

· три временных регистра, в каждом из которых хранилось одно слово.

Время выполнения операции сложения - 864 микросекунды, умножения - 2900 микросекунд. Компьютер состоял из почти 6000 электровакуумных ламп, и 12000 диодов, и потреблял 56 кВт энергии. Занимаемая площадь - 45,5 м², масса - 7850 кг. Полный состав обслуживающего персонала - 30 человек на каждую 8-часовую смену.

У истоков создания первой ЭВМ стояли многие учёные. В частности, Н. Винер в своей книге «Кибернетика» перечисляет следующие принципы конструирования ЭВМ.

1) Центральные суммирующие и множительные устройства должны быть цифровыми, как в обычном арифмометре, а не основываться на измерении (как в дифференциальном анализаторе Буша).

2) Эти устройства, являющиеся по существу переключателями, должны состоять из электронных ламп, а не из зубчатых передач или электромеханических реле. Это необходимо, чтобы обеспечить достаточное быстродействие.

3) В соответствии с принципами, принятыми для ряда существующих машин Белловских телефонных лабораторий, должна использоваться более экономичная двоичная, а не десятичная система счисления.

4) Последовательность действий должна планироваться самой машиной так, чтобы человек не вмешивался в процесс решения задачи с момента введения исходных данных до снятия окончательных результатов. Все логические операции, необходимые для этого, должна выполнять сама машина.

5) Машина должна содержать устройство для запасания данных. Это устройство должно быстро их записывать, надежно хранить до стирания, быстро считывать, быстро стирать их и немедленно подготавливаться к запасанию нового материала.

Как пишет Н. Винер: «Все эти рекомендации представляют собой идеи, положенные в основу современной сверхбыстрой вычислительной машины. Эти мысли почти носились тогда в воздухе, и я не хочу в данный момент заявлять какие-либо претензии на исключительный приоритет в их формулировке. Все же указанные рекомендации оказались полезными, и я надеюсь, что они имели некоторое влияние на популяризацию этого круга идей среди инженеров».

Другой известный учёный, Дж. фон Нейман, при конструировании ЭВМ EDVAC сформулировал ряд требований, которым должна удовлетворять ЭВМ. С тех пор (1945 г.) эти требования известны как принципы Джона фон Неймана, положенные в основу архитектуры современных ЭВМ.

1. Основные блоки ЭВМ: устройство управления (УУ), арифметико-логическое устройство (АЛУ), оперативная память (ОП или ОЗУ), внешнее запоминающее устройство (ВЗУ), устройство ввода-вывода данных (УВВ).

2. УУ и АЛУ объединяются в единое устройство, называемое процессором.

3. Алгоритм решения задачи (программа) представлен в виде последовательности управляющих слов – команд, которые определяют смысл выполняемой операции. Последовательность (совокупность) команд образует программу.

4. Команда – совокупность сведений, необходимых процессору для выполнения определённого действия. Адресный принцип состоит в том, что в команде указываются не сами числа, над которыми надо выполнить действия, а их адреса в ОП.