Размеры эвм 1 поколения. Поколение ЭВМ (2) - Реферат. История развития ЭВМ. Поколения

31.01.2019

Поколения ЭВМ.

Можно выделить 4 основные поколения ЭВМ. Но деление компьютерной техники на поколения - весьма условная, нестрогая классификация по степени развития аппаратных и программных средств, а также способов общения с компьютером.

Идея делить машины на поколения вызвана к жизни тем, что за время короткой истории своего развития компьютерная техника проделала большую эволюцию, как в смысле элементной базы (лампы, транзисторы, микросхемы и др.), так и в смысле изменения её структуры, появления новых возможностей, расширения областей применения и характера использования. Этот прогресс показан в данной таблице:

Запуск стал поворотным моментом в отношениях людей с компьютерами. Сегодня используется более 500 миллионов компьютеров, которым от четырех до пяти лет или старше. Они медленно просыпаются, их батареи не прослужили долго, и они не могут воспользоваться всеми новыми впечатлениями, доступными сегодня. Они также могут быть наполовину тонкие и половину веса, имеют более быстрое время пробуждения и время автономной работы, которое длится практически весь день 6. В ближайшие месяцы от производителей по всему миру появятся различные устройства широкого спектра форм-факторов.

П О К О Л Е Н И Я Э В М ХАРАКТЕРИСТИКИ
I II III IV
Годы применения 1946-1958 1958-1964 1964-1972 1972 - настоящее время
Основной элемент Эл.лампа Транзистор ИС БИС
Количество ЭВМ в мире (шт.) Десятки Тысячи Десятки тысяч Миллионы
Быстродействие (операций в секунду) 10 3 -14 4 10 4 -10 6 10 5 -10 7 10 6 -10 8
Носитель информации Перфокарта, Перфолента Магнитная Лента Диск Гибкий и лазерный диск
Размеры ЭВМ Большие Значительно меньше Мини-ЭВМ микроЭВМ

Немногим более 50 лет прошло с тех пор, как появилась первая электронная вычислительная машина. За этот короткий для развития общества период сменилось несколько поколений вычислительных машин, а первые ЭВМ сегодня являются музейной редкостью. Сама история развития вычислительной техники представляет немалый интерес, показывая тесную взаимосвязь математики с физикой (прежде всего с физикой твердого тела, полупроводников, электроникой) и современной технологией, уровнем развития которой во многом определяется прогресс в производстве средств вычислительной техники.

Производительность зависит от конфигурации системы. Никакая компьютерная система не может быть абсолютно безопасной. Любое изменение любого из этих факторов может привести к изменению результатов. Вы должны проконсультироваться с другими тестами информации и производительности, чтобы помочь вам в полной оценке ваших предполагаемых покупок, включая производительность этого продукта в сочетании с другими продуктами.

Основные характеристики ЭВМ

Любые различия в системном оборудовании, программном обеспечении или конфигурации могут повлиять на вашу фактическую производительность. Обратитесь к производителю памяти за гарантийными и дополнительными сведениями. Все указанные продукты, даты и цифры предварительно основаны на текущих ожиданиях и могут быть изменены без предварительного уведомления.

Электронно-вычислительные машины у нас в стране принято делить на поколения. Для компьютерной техники характерна прежде всего быстрота смены поколений - за ее короткую историю развития уже успели смениться четыре поколения и сейчас мы работаем на компьютерах пятого поколения. Что же является определяющим признаком при отнесении ЭВМ к тому или иному поколению? Это прежде всего их элементная база (из каких в основном элементов они построены), и такие важные характеристики, как быстродействие, емкость памяти, способы управления и переработки информации. Конечно же, деление ЭВМ на поколения в определенной мере условно. Существует немало моделей, которые по одним признакам относятся к одному, а по другим - к другому поколению. И все же, несмотря на эту условность поколения ЭВМ можно считать качественными скачками в развитии электронно-вычислительной техники.

История развития вычислительной техники. Краткая историческая справка. Поколения ЭВМ. Перспектив

Измерьте и рассчитайте среднюю мощность на время видео. Продукты, доступные от производителей систем, не будут идентичны по дизайну, и производительность будет отличаться. Эти ранние компьютеры были медленными на медленном льду, почти не хранили, и вам приходилось писать код, чтобы заставить их выполнять даже самую простую задачу. Он связан с любым другим компьютером на планете и может получить доступ практически к любой части человеческого знания, когда-либо созданного, почти мгновенно. Темпы изменений в вычислительной технике являются экстраординарными.



Первое поколение ЭВМ (1948 - 1958 гг.)

Элементной базой машин этого поколения были электронные лампы – диоды и триоды. Машины предназначались для решения сравнительно несложных научно-технических задач. К этому поколению ЭВМ можно отнести: МЭСМ, БЭСМ-1, М-1, М-2, М-З, “Стрела”, “Минск-1”, “Урал-1”, “Урал-2”, “Урал-3”, M-20, "Сетунь", БЭСМ-2, "Раздан". Они были значительных размеров, потребляли большую мощность, имели невысокую надежность работы и слабое программное обеспечение. Быстродействие их не превышало 2-3 тысяч операций в секунду, емкость оперативной памяти-2К или 2048 машинных слов (1K=1024) длиной 48 двоичных знаков. В 1958 г. появилась машина M-20 с памятью 4К и быстродействием около 20 тысяч операций в секунду. В машинах первого поколения были реализованы основные логические принципы построения электронно-вычислительных машин и концепции Джона фон Неймана, касающиеся работы ЭВМ по вводимой в память программе и исходным данным (числам). Этот период явился началом коммерческого применения электронных вычислительных машин для обработки данных. В вычислительных машинах этого времени использовались электровакуумные лампы и внешняя память на магнитном барабане. Они были опутаны проводами и имели время доступа 1х10-3 с. Производственные системы и компиляторы пока не появились. В конце этого периода стали выпускаться устройства памяти на магнитных сердечниках. Надежность ЭВМ этого поколения была крайне низкой.

У Британии есть гордая история передового опыта в области вычислительной техники. Все современные компьютеры основаны на теоретической и практической работе Алана Тьюринга, одного из настоящих гениев 20-го века. Всемирную паутину создал сэр Тим Бернерс-Ли.

Вместо нации строителей и предпринимателей мы были довольны тем, что наши дети тоже стали на рынке технологий. Мы в Год кодекса собираемся помочь в этом. Кодирование - это искусство говорить компьютеру о том, как выполнять сложные задачи. Как только вы знаете, как кодировать, вы можете создавать виртуальные миры внутри компьютера, где единственным ограничением на то, что возможно, является ваше воображение. Мы хотим превратить эту власть в руки и сердца каждого ребенка в Британии.

Второе поколение ЭВМ (1959 - 1967 гг.)

Элементной базой машин этого поколения были полупроводниковые приборы. Машины предназначались для решения различных трудоемких научно-технических задач, а также для управления технологическими процессами в производстве. Появление полупроводниковых элементов в электронных схемах существенно увеличело емкость оперативной памяти, надежность и быстродействие ЭВМ. Уменьшились размеры, масса и потребляемая мощность. С появлением машин второго поколения значительно расширилась сфера использования электронной вычислительной техники, главным образом за счет развития программного обеспечения. Появились также специализированные машины, например ЭВМ для решения экономических задач, для управления производственными процессами, системами передачи информации и т.д. К ЭВМ второго поколения относятся:

Через несколько часов вы сможете забрать базовые навыки, и через несколько недель вы сможете создавать полезные приложения и веб-сайты. Почему так важно, чтобы мы учили наших детей кодировать? Мы уже живем в мире, где доминирует программное обеспечение. Ваши телефонные звонки проходят через сети с программным управлением; ваш телевизор доставляется через Интернет; люди больше не покупают карты, они используют Интернет; мы все делаем онлайн. Мир следующего поколения будет еще более интерактивным и цифровым.

Программное обеспечение - это язык нашего мира

Вскоре ваш дом будет контролироваться программным обеспечением, некоторые из ваших медицинских услуг будут доставлены через Интернет, и ваш автомобиль может даже управлять собой. Программное обеспечение становится критическим слоем всей нашей жизни. Это язык нашего мира. В будущем, не зная языка компьютеров, будет так же сложно, как быть неграмотным или бесчисленным.

ЭВМ М-40, -50 для систем противоракетной обороны;

Урал -11, -14, -16 - ЭВМ общего назначения, ориентированные на решение инженерно-технических и планово-экономических задач;

Минск -2, -12, -14 для решения инженерных, научных и конструкторских задач математического и логического характера;

Минск-22 предназначена для решения научно-технических и планово-экономических задач;

Будет ли каждая работа в будущем включать программирование? Но все еще важно, чтобы каждый ребенок научился кодировать. Это в первую очередь не означает, что следующее поколение должно работать в качестве разработчиков программного обеспечения, а именно в продвижении вычислительного мышления. Вычислительное мышление - это то, как разработчики программного обеспечения решают проблемы. Он сочетает в себе математику, логику и алгоритмы, и учит вас новому способу думать о мире.

Быстродействие и производительность ЭВМ

Вычислительное мышление учит вас, как решать большие проблемы, разбивая их на несколько меньших, более управляемых проблем. Это позволяет решать сложные проблемы эффективным образом, который работает в огромных масштабах. Это предполагает создание моделей реального мира с подходящим уровнем абстракции и сосредоточение внимания на наиболее подходящих аспектах. Это помогает вам перейти от конкретных решений к общим.

БЭСМ-3 -4, -6 машин общего назначения, ориентированных на решение сложных задач науки и техники;

М-20, -220, -222 машина общего назначения, ориентированная на решение сложных математических задач;

МИР-1 малая электронная цифровая вычислительная машина, предназначенная для решения широкого круга инженерно-конструкторских математических задач,

История развития ЭВМ

Приложения этого подхода простираются за пределы программного обеспечения. Прикладные методы, такие как машиностроение, механика жидкости, физика, биология, археология и музыка, применяют вычислительный подход. В бизнесе мы начинаем понимать, что рынки часто следуют правилам, которые можно определить с помощью вычислительного анализа.

Вычислительное мышление - это навык, который каждый должен изучать. Даже если вы никогда не станете профессиональным инженером-программистом, вам будет полезно знать, как это мыслить. Это поможет вам понять и овладеть технологией всех видов и решить проблемы практически в любой дисциплине.

"Наири" машина общего назначения, предназначеная для решения широкого круга инженерных, научно-технических, а также некоторых типов планово-экономических и учетно-статистических задач;

Рута-110 мини ЭВМ общего назначения;

и ряд других ЭВМ.

ЭВМ БЭСМ-4, М-220, М-222 имели быстродействие порядка 20-30 тысяч операций в секунду и оперативную память-соответственно 8К, 16К и 32К. Среди машин второго поколения особо выделяется БЭСМ-6 , обладающая быстродействием около миллиона операций в секунду и оперативной памятью от 32К до 128К (в большинстве машин используется два сегмента памяти по 32К каждый).

Федеральное агентство по образованию

Он объединяет компьютерных ученых, предпринимателей, бизнес-лидеров и политических мыслителей, чтобы содействовать образованию наших детей в будущем мире. Цель состоит в том, чтобы каждый британский школьный ребенок научился кодировать; не через десять лет, а в следующем учебном году. Разнообразие руководства и сторонников проекта - большая сила. Сообщество разработчиков технологий решительно поддерживает эти усилия, как вы можете видеть из списка консультантов на веб-сайте. Мы люди с многолетним глубоким техническим опытом, которые понимают проблему, связанную с изучением нового подхода.

Данный период характеризуется широким применением транзисторов и усовершенствованных схем памяти на сердечниках. Большое внимание начали уделять созданию системного программного обеспечения, компиляторов и средств ввода-вывода. В конце указанного периода появились универсальные и достаточно эффективные компиляторы для Кобола, Фортрана и других языков.

У нас есть члены, которые уже много лет настаивают на кодировании в школах, а также новообращенных в этом деле. Эта широта стоит нам в хорошем состоянии, чтобы достичь огромного количества в этом году. Мы будем помогать преподавать кодирование каждому школьнику на земле. Мы будем преподавать кодирование любому, любому возрасту, который хочет учиться. Мы инвестируем в будущее Великобритании.

Д-р Дэн Кроу - главный технический директор Сонгкика, приглашенный профессор информатики Университета Лидса и советник Года Кодекса. В мире, где мы все больше полагаемся на вычисления, делиться нашей информацией и хранить наши самые ценные данные, идея жить без компьютеров может сбить с толку большинство людей.

Была достигнута уже величина времени доступа 1х10-6 с, хотя большая часть элементов вычислительной машины еще была связана проводами.

Вычислительные машины этого периода успешно применялись в областях, связанных с обработкой множеств данных и решением задач, обычно требующих выполнения рутинных операций на заводах, в учреждениях и банках. Эти вычислительные машины работали по принципу пакетной обработки данных. По существу, при этом копировались ручные методы обработки данных. Новые возможности, предоставляемые вычислительными машинами, практически не использовались.

История развития ЭВМ. Поколения

Чтобы предотвратить это, отрасль сосредоточена на поиске способов сделать вычисления более энергоэффективными, но классические компьютеры ограничены минимальным количеством энергии, которое требуется для выполнения одной операции. Он был назван «прорывом для энергосберегающих вычислений» и мог сократить количество энергии, используемой в компьютерах, на миллион. Однако это займет много времени, прежде чем мы увидим технологию, используемую в наших ноутбуках; и даже когда это будет, энергия все равно будет выше предела Ландауэра.

Именно в этот период возникла профессия специалиста по информатике, и многие университеты стали предоставлять возможность получения образования в этой области.

Первым устройством, предназначенным для облегчения счета, были счеты. С помощью костяшек счетов можно было совершать операции сложения и вычитания и несложные умножения.

Вот почему в долгосрочной перспективе люди обращаются к радикально различным способам вычисления, таким как квантовые вычисления, чтобы найти способы сократить потребление энергии. Квантовые вычисления используют возможность странной способности субатомных частиц существовать в более чем одном состоянии в любое время. Из-за того, как ведут себя самые маленькие частицы, операции могут выполняться гораздо быстрее и использовать меньше энергии, чем классические компьютеры.

В классических вычислениях бит представляет собой единую информацию, которая может существовать в двух состояниях - 1 или квантовые вычисления используют квантовые биты или «кубиты». Это квантовые системы с двумя состояниями. Однако, в отличие от обычного бита, они могут хранить гораздо больше информации, чем только 1 или 0, потому что они могут существовать в любой суперпозиции этих значений.

1642 г. - французский математик Блез Паскаль сконструировал первую механическую счетную машину «Паскалина», которая могла механически выполнять сложение чисел.

1673 г. - Готфрид Вильгельм Лейбниц сконструировал арифмометр, позволяющий механически выполнять четыре арифметических действия.

Первая половина XIX в. - английский математик Чарльз Бэббидж попытался построить универсальное вычислительное устройство, то есть компьютер. Бэббидж называл его аналитической машиной. Он определил, что компьютер должен содержать память и управляться с помощью программы. Компьютер по Бэббиджу - это механическое устройство, программы для которого задаются посредством перфокарт - карт из плотной бумаги с информацией, наносимой с помощью отверстий (они в то время уже широко употреблялись в ткацких станках).

Разница между классическими битами и кубитами заключается в том, что мы можем также подготовить кубиты в квантовой суперпозиции 0 и 1 и создать нетривиальные коррелированные состояния ряда кубитов, так называемых «запутанных состояний». Кубит можно рассматривать как воображаемую сферу. В то время как классический бит может находиться в двух состояниях - на любом из двух полюсов сферы - кубитом может быть любая точка на сфере. Это означает, что компьютер, использующий эти биты, может хранить огромное количество дополнительной информации, используя меньше энергии, чем классический компьютер.

1941 г. - немецкий инженер Конрад Цузе построил небольшой компьютер на основе нескольких электромеханических реле.

1943 г. - в США на одном из предприятий фирмы IBM Говард Эйкен создал компьютер под названием «Марк-1». Он позволял проводить вычисления в сотни раз быстрее, чем вручную (с помощью арифмометра), и использовался для военных расчетов. В нем использовалось сочетание электрических сигналов и механических приводов. «Марк-1» имел размеры: 15 * 2-5 м и содержал 750 000 деталей. Машина была способна перемножить два 32-разрядных числа за 4 с.

Аппаратные средства вычислительных комплексов

Но перенос квантовых вычислений в промышленный масштаб затруднен. Вычисления происходят, когда кубиты взаимодействуют друг с другом, поэтому для работы компьютера он должен иметь много кубитов. Основная причина, почему квантовые компьютеры настолько трудны в изготовлении, заключается в том, что ученые до сих пор не нашли простого способа управления сложными системами кубитов.

Теперь ученые из Московского физико-технического института и Российского квантового центра изучают альтернативный способ квантовых вычислений. Не довольствуясь единичными кубитами, исследователи решили по-другому решить проблему квантовых вычислений. Термин «уровень» исходит из того, что обычно каждое логическое состояние кубита соответствует состоянию с определенным значением энергии - и эти значения возможных энергий называются уровнями. «С точки зрения абстрактной квантовой теории информации все остается неизменным, но в конкретной физической реализации многоуровневая система представляет потенциально полезный ресурс».

1943 г. - в США группа специалистов под руководством Джона Мочли и Проспера Экерта начала конструировать компьютер ENIAC на основе электронных ламп.

1945 г. - к работе над ENIAC был привлечен математик Джон фон Нейман, который подготовил доклад об этом компьютере. В своем докладе фон Нейман сформулировал общие принципы функционирования компьютеров, т. е. универсальных вычислительных устройств. До сих пор подавляющее большинство компьютеров сделано в соответствии с теми принципами, которые изложил Джон фон Нейман.

Квантовые компьютеры уже используются, в том смысле, что логические ворота были сделаны с использованием двух кубитов, но проблема заключается в том, что квантовые компьютеры работают в промышленном масштабе. В другом месте, на шаг вперед, исследователи направляют электроны через полупроводники, используя невероятно короткие импульсы света.

Компьютеры не только становятся быстрее, легче, экономичнее и удобнее в использовании. Зарядка аккумулятора по беспроводной сети и перенос одного содержимого экрана на другой - не совсем новые понятия. Ожидается, что первые мониторы, поддерживающие новую технологию, будут доступны всего за шесть-двенадцать месяцев.

1947 г. - Экертом и Мочли начата разработка первой электронной серийной машины UNIVAC (Universal Automatic Computer). Первый образец машины (UNIVAC-1) был построен для бюро переписи США и пущен в эксплуатацию весной 1951 г. Синхронная, последовательного действия вычислительная машина UNIVAC-1 была создана на базе ЭВМ ENIAC и EDVAC. Работала она с тактовой частотой 2,25 МГц и содержала около 5000 электронных ламп. Внутреннее запоминающее устройство емкостью 1000 12-разрядных десятичных чисел было выполнено на 100 ртутных линиях задержки.

1949 г. - английским исследователем Морнсом Уилксом построен первый компьютер, в котором были воплощены принципы фон Неймана.

1951 г. - Дж. Форрестер опубликовал статью о применении магнитных сердечников для хранения цифровой информации, В машине «Whirlwind-1» впервые была применена память на магнитных сердечниках. Она представляла собой 2 куба с 32-32-17 сердечниками, которые обеспечивали хранение 2048 слов для 16-разрядных двоичных чисел с одним разрядом контроля на четность.

1952 г. - фирма IBM выпустила свой первый промышленный электронный компьютер IBM 701, который представлял собой синхронную ЭВМ параллельного действия, содержащую 4000 электронных ламп и 12 000 диодов. Усовершенствованный вариант машины IBM 704 отличался высокой скоростью работы, в нем использовались индексные регистры и данные представлялись в форме с плавающей запятой.

После ЭВМ IBM 704 была выпущена машина IBM 709, которая в архитектурном плане приближалась к машинам второго и третьего поколений. В этой машине впервые была применена косвенная адресация и впервые появились каналы ввода - вывода.

1952 г. - фирма Remington Rand выпустила ЭВМ UNIVAC-t 103, в которой впервые были применены программные прерывания. Сотрудники фирмы Remington Rand использовали алгебраическую форму записи алгоритмов под названием «Short Code» (первый интерпретатор, созданный в 1949 г. Джоном Мочли).

1956 г. - фирмой IBM были разработаны плавающие магнитные головки на воздушной подушке. Изобретение их позволило создать новый тип памяти - дисковые запоминающие устройства (ЗУ), значимость которых была в полной мере оценена в последующие десятилетия развития вычислительной техники. Первые ЗУ на дисках появились в машинах IBM 305 и RAMAC. Последняя имела пакет, состоявший из 50 металлических дисков с магнитным покрытием, которые вращались со скоростью 12000 об. /мин. На поверхности диска размещалось 100 дорожек для записи данных, по 10 000 знаков каждая.

1956 г. - фирма Ferranti выпустила ЭВМ «Pegasus», в которой впервые нашла воплощение концепция регистров общего назначения (РОН). С появлением РОН устранено различие между индексными регистрами и аккумуляторами, и в распоряжении программиста оказался не один, а несколько регистров-аккумуляторов.

1957 г. - группа под руководством Д. Бэкуса завершила работу над первым языком программирования высокого уровня, получившим название ФОРТРАН. Язык, реализованный впервые на ЭВМ IBM 704, способствовал расширению сферы применения компьютеров.

1960-е гг. - 2-е поколение ЭВМ, логические элементы ЭВМ реализовываются на базе полупроводниковых приборов-транзисторов, развиваются алгоритмические языки программирования, такие как Алгол, Паскаль и другие.

1970-е гг. - 3-е поколение ЭВМ, интегральные микросхемы, содержащие на одной полупроводниковой пластине тысячи транзисторов. Начали создаваться ОС, языки структурного программирования.

1974 г. - несколько фирм объявили о создании на основе микропроцессора Intel-8008 персонального компьютера - устройства, выполняющего те же функции, что и большой компьютер, но рассчитанного на одного пользователя.

1975 г. - появился первый коммерчески распространяемый персональный компьютер Альтаир-8800 на основе микропроцессора Intel-8080. Этот компьютер имел оперативную память всего 256 байт, клавиатура и экран отсутствовали.

Конец 1975 г. - Пол Аллен и Билл Гейтс (будущие основатели фирмы Microsoft) создали для компьютера «Альтаир» интерпретатор языка Basic, позволивший пользователям просто общаться с компьютером и легко писать для него программы.

Август 1981 г. - компания IBM представила персональный компьютер IBM PC. В качестве основного микропроцессора компьютера использовался 16-разрядный микропроцессор Intel-8088, который позволял работать с 1 мегабайтом памяти.

1980-е гг. - 4-е поколение ЭВМ, построенное на больших интегральных схемах. Микропроцессоры реализовываются в виде единой микросхемы, Массовое производство персональных компьютеров.

1990-е гг. - 5-е поколение ЭВМ, сверхбольшие интегральные схемы. Процессоры содержат миллионы транзисторов. Появление глобальных компьютерных сетей массового пользования.

2000-е гг. - 6-е поколение ЭВМ. Интеграция ЭВМ и бытовой техники, встраиваемые компьютеры, развитие сетевых вычислений.

Появление ЭВМ или компьютеров - одна из существенных примет современной научно-технической революции. Широкое распространение компьютеров привело к тому, что все большее число людей стало знакомиться с основами вычислительной техники, а программирование постепенно превратилось в элемент культуры. Первые электронные компьютеры появились в первой половине XX века. Они могли делать значительно больше механических калькуляторов, которые лишь складывали, вычитали и умножали. Это были электронные машины, способные решать сложные задачи.

Кроме того, они имели две отличительные особенности, которыми предыдущие машины не обладали:

I. Одна из них состояла в том, что они могли выполнять определенную последовательность операций по заранее заданной программе или последовательно решать задачи разных типов . II. Способность хранить информацию в специальной памяти .

На этом сайте вы найдете подробную информацию о поколениях компьютеров и о некоторых их представителей! Но для начала хотелось бы показать основные характеристики ЭВМ всех пяти поколений...

I ПОКОЛЕНИЕ

II ПОКОЛЕНИЕ

Эл. база : Электронно-вакуумные лампы

Быстродействие : 8 - 20 тыс. оп/с

Програмное обеспечение : язык "Ассемблер"

Названия : "МЭСМ", "БЭСМ", "Эниак"

Эл. база : Полупровогдники (транзисторы, диоды)

Быстродействие : 0,1 - 1 млн. оп/с

Програмное обеспечение : транслятор и компилятор

Названия : "БЭСМ-6", "Днепр-1"

III ПОКОЛЕНИЕ

IV ПОКОЛЕНИЕ

Эл. база : Интегральные схемы (МИС, СИС)

Быстродействие : 1 млн. оп/с

Програмное обеспечение : языки высокого уровня ("Pascal", "Basic"); отладчики

Названия : IBM 360/370, ЕСЭВМ

Эл. база : Интегральные схемы (БИС, СБИС)

Быстродействие : более 1 млн. оп/с

Програмное обеспечение : объектно-ориентированные языки програмирования, програмные оболочки, различные редакторы.

Названия : "МЭСМ", "БЭСМ", "Эниак"

V ПОКОЛЕНИЕ

Программа разработки была принята в Японии в 1982 г. Предполагалось, что к 1991 г. будут созданы принципиально новые компьютеры, ориентированные на решение задач искусственного интеллекта. С помощью языка Пролог и новшеств в конструкции компьютеров планировалось вплотную подойти к решению одной из основных задач этой ветви компьютерной науки - задачи хранения и обработки знаний. Коротко говоря, для компьютеров "пятого поколения" не пришлось бы писать программ, а достаточно было бы объяснить на "почти естественном" языке, что от них требуется.

Компьютеры на основе электронных ламп появились в 40-х годах XX века. Первая электронная лампа - вакуумный диод - была построена Флемингом лишь в 1904 году, хотя эффект прохождения электрического тока через вакуум был открыт Эдисоном в 1883 году. Вскоре Ли де Форрест изобретает вакуумный триод - лампу с тремя электродами, затем появляется газонаполненная электронная лампа - тиратрон, пятиэлектродная лампа - пентод и т. д. До 30-х годов электронные вакуумные и газонаполненные лампы использовались главным образом в радиотехнике. Но в 1931 году англичанин Винни-Вильямс построил (для нужд экспериментальной физики) тиратронный счетчик электрических импульсов, открыв тем самым новую область применения электронных ламп. Электронный счетчик состоит из ряда триггеров. Триггер, изобретенный М. А. Бонч-Бруевичем (1918) и - независимо - американцами У. Икклзом и Ф. Джорданом (1919), содержит 2 лампы и в каждый момент может находиться в одном из двух устойчивых состояний; он представляет собой электронное реле. Подобно электромеханическому, оно может быть использовано для хранения одной двоичной цифры. Подробнее об электронной лампе здесь.

Использование электронной лампы в качестве основного элемента ЭВМ создавало множество проблем. Из-за того, что высота стеклянной лампы - 7см, машины были огромных размеров. Каждые 7-8 мин. одна из ламп выходила из строя, а так как в компьютере их было 15 - 20 тысяч, то для поиска и замены поврежденной лампы требовалось очень много времени. Кроме того, они выделяли огромное количество тепла, и для эксплуатации "современного" компьютера того времени требовались специальные системы охлаждения.

Чтобы разобраться в запутанных схемах огромного компьютера, нужны были целые бригады инженеров. Устройств ввода в этих компьютерах не было, поэтому данные заносились в память при помощи соединения нужного штеккера с нужным гнездом.

Примерами машин I-го поколения могут служить Mark 1, ENIAC, EDSAC (Electronic Delay Storage Automatic Calculator), - первая машина с хранимой программой. UNIVAC (Universal Automatic Computer). Первый экземпляр Юнивака был передан в Бюро переписи населения США. Позднее было создано много разных моделей Юнивака, которые нашли применение в различных сферах деятельности. Таким образом, Юнивак стал первым серийным компьютером. Кроме того, это был первый компьютер, где вместо перфокарт использовалась магнитная лента.

1 июля 1948 года на одной из страниц "Нью-Йорк Таймс", посвященной радио и телевидению, было помещено скромное сообщение о том, что фирма "Белл телефон лабораториз" разработала электронный прибор, способный заменить электронную лампу. Физик-теоретик Джон Бардин и ведущий экспериментатор фирмы Уолтер Брайттен создали первый действующий транзистор. Это был точечно-контактный прибор, в котором три металлических "усика" контактировали с бруском из поликристаллического германия. Подробнее о транзисторе здесь.

Первые компьютеры на основе транзисторов появились в конце 50-х годов, а к середине 60-х годов были созданы более компактные внешние устройства, что позволило фирме Digital Equipment выпустить в 1965 г. первый мини-компьютер PDP-8 размером с холодильник и стоимостью всего 20 тыс. долларов.

Созданию транзистора предшествовала упорная, почти 10-летняя работа, которую еще в 1938 году начал физик теоретик Уильям Шокли. Применение транзисторов в качестве основного элемента в ЭВМ привело к уменьшению размеров компьютеров в сотни раз и к повышению их надежности.

И все-таки самой удивительной способностью транзистора является то, что он один способен трудиться за 40 электронных ламп и при этом работать с большей скоростью, выделять очень мало тепла и почти не потреблять электроэнергию. Одновременно с процессом замены электронных ламп транзисторами совершенствовались методы хранения информации. Увеличился объем памяти, а магнитную ленту, впервые примененную в ЭВМ Юнивак, начали использовать как для ввода, так и для вывода информации. А в середине 60-х годов получило распространение хранение информации на дисках. Большие достижения в архитектуре компьютеров позволило достичь быстродействия в миллион операций в секунду! Примерами транзисторных компьютеров могут послужить "Стретч" (Англия), "Атлас" (США). В то время СССР шел в ногу со временем и выпускал ЭВМ мирового уровня (например "БЭСМ-6").

Подобно тому, как появление транзисторов привело к созданию второго поколения компьютеров, появление интегральных схем ознаменовало собой новый этап в развитии вычислительной техники - рождение машин третьего поколения. Интегральная схема, которую также называют кристаллом, представляет собой миниатюрную электронную схему, вытравленную на поверхности кремниевого кристалла площадью около 10 мм2. Подробнее об интегральных схемах здесь.

Первые интегральные схемы (ИС) появились в 1964 году. Сначала они использовались только в космической и военной технике. Сейчас же их можно обнаружить где угодно, включая автомобили и бытовые приборы. Что же качается компьютеров, то без интегральных схем они просто немыслимы!

Появление ИС означало подлинную революцию в вычислительной технике. Ведь она одна способна заменить тысячи транзисторов, каждый из которых в свою очередь уже заменил 40 электронных ламп. Другими словами, один крошечный кристалл обладает такими же вычислительными возможностями, как и 30-тонный Эниак! Быстродействие ЭВМ третьего поколения возросло в 100 раз, а габариты значительно уменьшились.

Ко всем достоинствам ЭВМ третьего поколения добавилось еще и то, что их производство оказалось дешевле, чем производство машин второго поколения. Благодаря этому, многие организации смогли приобрести и освоить такие машины. А это, в свою очередь, привело к росту спроса на универсальные ЭВМ, предназначенные для решения самых различных задач. Большинство созданных до этого ЭВМ являлись специализированными машинами, на которых можно было решать задачи какого-то одного типа.

Электромеханические детали счетных машин уступили место электронным лампам, которые в свою очередь уступили место транзисторам, а последние - интегральным схемам. Могло создастся впечатление, что технические возможности ЭВМ исчерпаны. Что же можно еще придумать?

Чтобы получить ответ на этот вопрос, давайте вернемся к началу 70-х годов. Именно в это время была предпринята попытка выяснить, можно ли на одном кристалле разместить больше одной интегральной схемы. Оказалось, можно! Развитие микроэлектроники привело к созданию возможности размещать на одном-единственном кристалле тысячи интегральных схем. Так, уже в 1980 году, центральный процессор небольшого компьютера оказался возможным разместить на кристалле, площадью всего в четверть квадратного дюйма (1,61 см2). Началась эпоха микрокомпьютеров.

Каково же быстродействие современной микроЭВМ? Оно в 10 раз превышает быстродействие ЭВМ третьего поколения на интегральных схемах, в 1000 раз - быстродействие ЭВМ второго поколения на транзисторах и в 100000 раз - быстродействие ЭВМ первого поколения на электронных лампах.

Далее, почти 40 лет назад компьютеры типа Юнивак стоили около 2,5 млн. долларов. Сегодня же ЭВМ со значительно большим быстродействием, более широкими возможностями, более высокой надежностью, существенно меньшими габаритами и более простая в эксплуатации стоит примерно 2000 долларов. Каждые 2 года стоимость ЭВМ снижается примерно в 2 раза.

Очень большую роль в развитии компьютеров сыграли две ныне гигантские фирмы: Microsoft® и Intel®. Первая из них очень сильно повлияла на развитие программного обеспечения для компьютеров, вторая же стала известна благодаря выпускаемым ей лучшим микропроцессорам.

Переход к компьютерам пятого поколения предполагал переход к новым архитектурам, ориентированным на создание искусственного интеллекта.

Считалось, что архитектура компьютеров пятого поколения будет содержать два основных блока. Один из них - собственно компьютер, в котором связь с пользователем осуществляет блок, называемый "интеллектуальным интерфейсом". Задача интерфейса - понять текст, написанный на естественном языке или речь, и изложенное таким образом условие задачи перевести в работающую программу.

Основные требования к компьютерам 5-го поколения: Создание развитого человеко-машинного интерфейса (распознавание речи, образов); Развитие логического программирования для создания баз знаний и систем искусственного интеллекта; Создание новых технологий в производстве вычислительной техники; Создание новых архитектур компьютеров и вычислительных комплексов.

Новые технические возможности вычислительной техники должны были расширить круг решаемых задач и позволить перейти к задачам создания искусственного интеллекта. В качестве одной из необходимых для создания искусственного интеллекта составляющих являются базы знаний (базы данных) по различным направлениям науки и техники. Для создания и использования баз данных требуется высокое быстродействие вычислительной системы и большой объем памяти. Универсальные компьютеры способны производить высокоскоростные вычисления, но не пригодны для выполнения с высокой скоростью операций сравнения и сортировки больших объемов записей, хранящихся обычно на магнитных дисках. Для создания программ, обеспечивающих заполнение, обновление баз данных и работу с ними, были созданы специальные объектно ориентированные и логические языки программирования, обеспечивающие наибольшие возможности по сравнению с обычными процедурными языками. Структура этих языков требует перехода от традиционной фон-неймановской архитектуры компьютера к архитектурам, учитывающим требования задач создания искусственного интеллекта.

К классу суперкомпьютеров относят компьютеры, которые имеют максимальную на время их выпуска производительность, или так называемые компьтеры 5-го поколения.

Первые суперкомпьютеры появились уже среди компьютеров второго поколения (1955 - 1964, см. компьютеры второго поколения), они были предназначены для решения сложных задач, требовавших высокой скорости вычислений. Это LARC фирмы UNIVAC, Stretch фирмы IBM и "CDC-6600" (семейство CYBER) фирмы Control Data Corporation, в них были применены методы параллельной обработки (увеличивающие число операций, выполняемых в единицу времени), конвейеризация команд (когда во время выполнения одной команды вторая считывается из памяти и готовится к выполнению) и параллельная обработка при помощи процессора сложной структуры, состоящего из матрицы процессоров обработки данных и специального управляющего процессора, который распределяет задачи и управляет потоком данных в системе. Компьютеры, выполняющие параллельно несколько программ при помощи нескольких микропроцессоров, получили название мультипроцессорных систем.

Отличительной особенностью суперкомпьютеров являются векторные процессоры, оснащенные аппаратурой для параллельного выполнения операций с многомерными цифровыми объектами - векторами и матрицами. В них встроены векторные регистры и параллельный конвейерный механизм обработки. Если на обычном процессоре программист выполняет операции над каждым компонентом вектора по очереди, то на векторном - выдаёт сразу векторые команды

Компьютеры фирмы Cray Research стали классикой в области векторно-конвейерных суперкомпьютеров. Существует легенда, что первый суперкомпьютер Cray был собран в гараже, однако этот гараж был размером 20 х 20 метров, а платы для нового компьютера заказывались на лучших заводах США.

Компьютер Cray-1, работа над которым была закончена в 1976 году относится к классу первых сверхвысокопроизводительных векторных компьютеров. К этому классу относятся также машины Иллиак-IV, STAR-100, ASC. Производительность Cray-1 составляла 166 Мфлоп/сек. Компьютер был собран на интегральных схемах. Выполнял 128 инструкций. В состав структуры компьютера Cray-1 входили:

1. Основная память, объемом до 1048576 слов, разделенная на 16 независимых блоков, емкостью 64К слов каждый;

2. Регистровая память, состоящая из пяти групп быстрых регистров, предназначенных для хранения и преобразования адресов, для хранения и обработки векторных величин;

3. Функциональные модули, в состав которых входят 12 параллельно работающих устройств, служащих для выполнения арифметических и логических операций над адресами, скалярными и векторными величинами.

Двенадцать функциональных устройств машины Cray-1, играющие роль арифметико-логических преобразователей, не имеют непосредственной связи с основной памятью. Так же как и в машинах семейства CDC-6000, они имеют доступ только к быстрым операционным регистрам, из которых выбираются операнды и в которые записываются результаты выполнения операций;

4. Устройство, выполняющее функции управления параллельной работой модулей, блоков и устройств центрального процессора;

5. 24 канала ввода-вывода, организованные в 6 групп с максимальной пропускной способностью 500000 слов в секунду (2 млн. байт в сек.);

6. Три группы операционных регистров, непосредственно связанных с арифметико-логическими устройствами, называются основными. К ним относятся восемь А-регистров, состоящих из 24 разрядов каждый. А-регистры связаны с двумя функциональными модулями, выполняющими сложение (вычитание) и умножение целых чисел. Эти операции используются главным образом для преобразования адресов, их базирования и индексирования. Они также используются для организации счетчиков циклов. В ряде случаев А-регистры используются для выполнения арифметических операций над целыми числами.

До середины 80-х годов в списке крупнейших производителей суперкомпьютеров в мире были фирмы Sperry Univac и Burroughs. Первая известна, в частности, своими мэйнфреймами UNIVAC-1108 и UNIVAC-1110, которые широко использовались в университетах и государственных организациях.

После слияния Sperry Univac и Burroughs объединенная фирма UNISYS продолжала поддерживать обе линии мэйнфреймов с сохранением совместимости снизу вверх в каждой. Это является ярким свидетельством непреложного правила, поддерживавшего развитие мэйнфреймов - сохранение работоспособности ранее разработанного программного обеспечения.

В мире суперкомпьютеров известна и компания Intel. Многопроцессорные компьютеры Paragon фирмы Intel в семействе многопроцессорных структур с распределенной памятью стали такой же классикой, как компьютеры фирмы Cray Research в области векторно-конвейерных суперкомпьютеров.

Можно выделить 4 основные поколения ЭВМ. Но деление компьютерной техники на поколения - весьма условная, нестрогая классификация по степени развития аппаратных и программных средств, а также способов общения с компьютером.

Идея делить машины на поколения вызвана к жизни тем, что за время короткой истории своего развития компьютерная техника проделала большую эволюцию, как в смысле элементной базы (лампы, транзисторы, микросхемы и др.), так и в смысле изменения её структуры, появления новых возможностей, расширения областей применения и характера использования. Этот прогресс показан в данной таблице:

П О К О Л Е Н И Я Э В М

ХАРАКТЕРИСТИКИ

Годы применения

1972 - настоящее время

Основной элемент

Транзистор

Количество ЭВМ в мире (шт.)

Десятки тысяч

Миллионы

Быстродействие (операций в секунду)

Носитель информации

Перфокарта, Перфолента

Магнитная Лента

Гибкий и лазерный диск

Размеры ЭВМ

Значительно меньше

микроЭВМ

I поколение

(до 1955 г.)

Все ЭВМ I-го поколения были сделаны на основе электронных ламп, что делало их ненадежными - лампы приходилось часто менять. Эти компьютеры были огромными, неудобными и слишком дорогими машинами, которые могли приобрести только крупные корпорации и правительства. Лампы потребляли огромное количество электроэнергии и выделяли много тепла.