Билеты по информатике. Эволюция и классификация языков программирования. Моделирование как метод познания

25.01.2019

Билеты по информатике

Информация и информационные процессы в природе, обществе, технике. Информационная деятельность человека.

Технология объектно-ориентированного программирования. Объекты и их свойства.

Практическое задание на проведение расчетов с помощью электронной таблицы.

Информация и управление. Назначение и функции обратной связи.

Технология логического программирования. Отличие логических языков программирования от алгоритмических языков программирования.

Задача на определения результата выполнения алгоритма по его блок-схеме или записи на алгоритмическом языке.

Язык и информация. Естественные и формальные языки.

Технология алгоритмического программирования. Основные типы и способы организации данных (переменные, массивы, списки и пр.)

П
рактическое задание на построение графика функции с помощью электронных таблиц.

Двоичная система счисления. Запись чисел в двоичной системе счисления.

Магистрально-модульный принцип построения компьютера.

Задача на разработку алгоритма для исполнения типа Робот или Черепашка.

Двоичное кодирование информации.

Основные характеристики компьютера (разрядность магистрали, объем оперативной и внешней памяти, тактовая частота и др.).

Практическое задание на создание, преобразование, хранение и распечатку рисунка с помощью графического редактора.

Количество информации. Единицы измерения количества информации.

Внешняя память компьютера. Различные типы носителей информации (информационная емкость, быстродействие и т.д.).

Практическое задание по работе с файлами (копирование, переименование, удаление и т.д.).

Основные устройства компьютера, их функции и взаимность.

Основы языка разметки гипертекста (НТ).

Практическое задание по поиску файлов.

Программное управление работой компьютера. Программное обеспечение компьютера.

Основные логические операции. Логическое умножение, сложение, отрицание.

Практическое задание по работе с дисками (форматирование, создание системной дискеты и т.д.).

Файлы (тип, имя, местоположение). Файловая система. Основные операции с файлами.

Логические выражения и их преобразования. Таблицы истинности.

Практическое задание по “ лечению” гибкого диска от вирусов с использованием графического интерфейса.

Правовая охрана программ и данных. Защита информации.

Основы логические устройства компьютера (сумматор).

Практическое задание на создание,редактирование, сохранение и распечатку текста с помощью текстового редактора.

моделирование как метод научного познания. Модели материальные и информационные.

Основные логические устройства компьютера (регистр).

Практическое задание на поиск информации в базе данных по заданным параметрам.

Формализация. Построение математических моделей.

Технология мультимедиа (аппаратные и программные средства).

Практическое задание на сортировку информации в базе данных по заданным параметрам.

технология решения задач с помощью компьютера. Технологическая цепочка: построение модели – формализация – алгоритм – программа – компьютерный эксперимент.

Программное обеспечение компьютера (его состав и назначение).

Задача на перевод десятичного числа в двоичное число.

понятие алгоритма. Свойства алгоритмов. Возможность автоматизации деятельности человека.

Операционная система компьютера (назначение, состав, загрузка).

Разветвляющиеся алгоритмы. Команда ветвления.

Позиционные и непозиционные системы счисления. Запись чисел в позиционных системах счисления.

Задача на определение истинности составного высказывания.

Циклические алгоритмы. Команда повторения.

Выполнение арифметических операций в двоичной системе счисления.

Задача на определение единиц измерения количества информации.

Разработка алгоритмы методом последовательной детализации. Вспомогательные алгоритмы.

Информационное моделирование. Основные типы информационных моделей (табличные, иерархические, сетевые).

Задача на сложение двоичных чисел.


Основы языка программирования (алфавит, операторы, типы данных и т.д.).

Статические информационные модели (модели состояния). Динамические информационные модели (модели поведения).

Задача на построение запроса при поиске информации в интернете.

Текстовый редактор. Назначение и основные функции. Кодировки русских букв.

Информационные модели процессов управления.

Практическое задание на инсталляцию программного продукта.

Графический редактор. Назначение и основные функции. Форматы графических файлов.

Формально-логические модели и математические модели.

Электронные таблицы. Назначение и основные функции.

Системы программирования. Интерпретации и компиляция.

Задача на построение информационной модели.

Базы данных. Назначение и основные функции. Системы управление базами данных (СУБД).

Компьютерные вирусы: методы распространения, профилактика заряжения.

Практические задания на разработку Web-страницы с использованием инструментального средства.

Глобальная сеть Интернет и ее информационные ресурсы (электронная почта, телеконференции, файловые архивы, Всемирная паутина).

Информация. Вероятностный подход к измерению количества информации.

Задача на построение блок-схемы простого алгоритма, записанного на естественном языке.

Гипертекст. Технология WWW (World Wild Web).

Основы объектно-ориентированного программирования.

Практическое задание на определение информационной емкости различных носителей информации.

Информатизация общества. Основные этапы развития вычислительной техники.

Структура глобальной компьютерной сети Интернет. Адресация в Интернат.

Практическое задание на преобразование формата графического файла.



Технике. Информационная деятельность человека.

Информация – фундаментальная понятие, поэтому определить его исчерпывающим образом через какие-то более простые понятия невозможно. Каждый вариант определения информации обладает некоторой неполнотой. В широком смысле информация –это отражение реального (материального, предметного) мира, выражаемое в виде сигналов и знаков. Сигналы отражают физические (физически - химические) характеристики различных процессов и объектов.

Действия, выполняемые с информацией, называются информационными процессами. Информационные процессы можно разложить на три составляющие: хранение, передачу и обработку информации.

Объединение понятий (информация) и (управление) привело Н. Винера в 40-х гг. к созданию кибернетики, которая, в частности, впервые указала на общность информационных процессов в технике, обществе и живых организмах. Объекты живой природы, в отличие от неживой, обладают свойством обмена информацией, и реагировать на нее. Так, например, горы подвержены эрозии из-за неблагоприятных влияний ветра, солнца, дождя, но они не могут принять эту информацию к сведенью и использовать ее для выживания, в отличие, например, от зайцев, которые меняют свою окраску на белую, получив информацию из окружающего мира о наступление зимы. Пчела летит на запах цветка, является информацией для нее, летучие мыши ориентируются в пространстве, получая информацию с помощью ультразвуковой локации. Собака обладает прекрастными способностями к общению. Она получает и обрабатывает следующую информацию: если она совершает действия, которые от нее требует хозяин, он поощряет ее. Чтобы достичь желаемого, собака должна отбирать внешнюю информацию, необходимую для дальнейших действий. Она, например, связывать понятие (свой) с членами семьи хозяина и понятие (чужой) со всеми остальными людьми.

Использование понятие информации оказало существенное влияние на развитие современной биологии, особенно таких ее разделов, как нейрофизиология и генетика.

В технике программно-упровляемые станки работают, руководствуясь заложенной в них информацией- программой их работы;автомат на вход в метро, получив информацию о том, опущен или не опущен жетон, соответственно пропускает или не пропускает человека;автопилот управляет самолетом в соответствии с заложенной в него программой.

Но лишь для человека, получаемая из внешнего мира, может становиться сведеньями, являющимися объектом осознанного хранения, обмена и преобразования. Информационные процессы всегда играли важную роль в жизни общества. Люди обмениваются устными сообщениями, записками, посланиями. Они передают друг другу просьбы, приказы, отчеты о проделанной работе, публикуют рекламное объявления и научным статьи, хранят старые письма, долго размышляют над полученными известиями или немедленно кидаются выполнить указания начальства. Большое значение для сохранения и развития культуры имеет передаче из поколения в поколение сказок, традиций, легенд, создание произведений живописи.

Вся жизнь человека постоянно связана с получением, накоплением и обработкой информации. Информация является предметом интеллектуальной деятельности человека, продуктом этой деятельности. Информация для человека –это знания, которое он получает из различных источников. Все, что знает каждый конкретный человек, он когда-то узнал от родителей, учителей, из книг, личного практического, опыта и сохранил в своей памяти. В свою очередь все, что написано в книгах, журналах, газетах, отражает знания авторов этих текстов, а потому это тоже информация.

Вопрос о классификации знаний - сложная научная проблема. Один из подходов к такой классификации заключается в делении ЗНАНИЙ на декларативные и процедурные.

К декларативным (от слова (декларация), что значит(утверждение), (сообщение)) относятся знания об определенных явлениях (Земля вращается вокруг Солнца), событиях (Пушкин родился в 1799 году), своих объектов(Байкал- самое глубокое в мире пресное озеро), зависимостях (квадрат гипотенузы равен сумме квадратов катетов).

К процедурным относится знания о действиях, которое нужно предпринять для достижения какой-либо цели (как собрать радиоприемник, как решить квадратное управление, как вырастить помидоры, как лечить от простуды).

С тремя составляющими информационных процессов – хранением, передачей и обработкой информации- люди начали иметь дело давно, задолго до появления компьютеров.

Человек хранит информацию либо в собственной памяти (иногда говорят “в уме”), либо на каких-то внешних носителях. Чаще всего- на бумаге. Те сведения, которое человек помнит, ему всегда доступны. Каждый человек помнит свой домашний адрес, номер телефона, а также адреса и телефоны близких людей. Если же понадобится адрес и телефон, который вы не помните, то поможет записная книжка или телефонный справочник.

Собственную память человека можно назвать оперативной памятью. Здесь слово (оперативный) является синонимом слова (быстрый). Заученные знания воспроизводятся человеком мгновенно. Собственную память еще можно назвать внутренней памятью, поскольку ее носитель- мозг- находятся внутри человеческого тела.

Записные книжки, справочники, энциклопедии, магнитные записи, по отношению к человеке являются внешними хранилищами информации. Чтобы воспользоваться информацией из внешнего источника, ее сначала нужно сделать оперативный (прочитать номер телефона), а потом использовать по назначению (набрать номер на аппарате). Оперативную информацию человек может забыть. Информация на внешних носителях хранится надежнее. Книги, записи можно рассматривать как расширение памяти человека, как нашу внешнюю память.

Человеку постоянно приходится участвовать в процессе передачи информации. Передача может происходить при непосредственном разговоре между людьми, через переписку, с помощью технических средств, связи: телефона, радио, телевидения. Такие средства связи называются каналами передачи информации.

В процессе передачи информация может искажаться или теряться, если информационные каналы плохого качества или на линии связи действуют помехи (шумы). Многие знают, как трудно общаться при плохой телефонной связи.

Процесс передачи информации всегда двусторонний: есть источник и есть приемник информации. Источник передает (отправляет) информацию, а приемник ее получает (воспринимает). Читая книгу или слушая учителя, ученик является приемником информации. Каждый человек постоянно переходит от роли источника к роли приемника информации.

Человеку почти непрерывно приходится заниматься обработкой информации. Вот несколько вариантов обработки:

Получение новой информации из данной путем математических вычислений или логических рассуждений (например, решение математической задачи, раскрытие следователем по собранным уликам);

Изменение формы представления информации +без изменения ее содержания (например, перевод текста с одного языка на другой, шифровка (кодирование) текста);

Упорядочение (сортировка) информации (например, упорядочение списков класса в алфавитном прядке по фамилиям учеников, упорядочение расписания поездов по времени отправления);

Поиск нужной информации в некотором информационном массиве (например, поиск номера телефона в телефонной книге, поиск перевода иностранного слова в словаре, поиск сведений о рейсе самолета в расписаний аэропорта).

Человек воспринимает информацию из окружающего мира с помощью своих органов чувств. Их пять: зрение, вкус, обоняние, осязание.

Более 90% информации поступает к нам через зрение и слух. Но и запахи, вкусовые и осязательные ощущения тоже несут информацию. Например, почувствовав запах гари, вы узналь, что на кухне сгорел обед, о котором забыли. На вкус вы легко узнаете знакомую пищу, на ощупь – знакомые предметы даже в темноте.

Информация, воспринимаемая человеком в речевой или письменной форме, называется (или знаковой) информацией. В самом деле. В письменном тексте содержатся буквы, знаки препинания, цифры и другие символы. Устная реч тоже складывается из знаков. Только эти знаки не письменные, а звуковы, они называются фонемами. Из фонем складываются слова, из слов – фразы. Между письменными знаками и звуками есть премая связь, поскольку письменность фиксируется на бумаге человеческую речь. Отдельные буквы или сочетание букв обозначают звуки речи, а знаки препинания – паузы, интонацию.

Человеческая речь и письменность тесно связаны с понятием языка. Язык – это знаковая система для представления информаций. Разговорные имеют национальный хорактер. Есть русский, английский, китайский, французкий и другие. Они называются естественными языками.

Кроме естест венных существуют формальные языки. Как правило, эти языки какой – нибудь профессии или области знаний. Например, матиматическую символику можно назвать формальным языком математике, нотную грамоту – формальным языком музыки.

Естественные языки носят национальный хорактер и имеют устную и письменную форму. Формальные языки – это, как правило, искусственный языки професионального общения.

Можно привести примеры способов языкового обмена информацией, заменяющих речь. Например, глухонимые люди заменяют жестикуляцией. Жесты дирижера передают информацию музыкантам. Судья на спортивной площадке пользуется определенным языком жестов, понятным игрокам.

Запахи, вкусовые и осезательные ощущения не сводятся к каким – то знакам, не могут быть переданы с помощью знаков. Безусловно, они несут информацию, поскольку мы их запоминаем, узнаем. Такую информацию называут образной информацией. К образной относится также информация, воспринимаемая через зрение и слух, но не сводящаяся к языкам (шум ветра, пение птиц, картины природы).


Хотя информация связана с материальным носителем, а ее передача – с затратами энергии, одну и ту же информацию можно хранить на различных материальных носителях (на бумаге, в виде фотографии, на магнитной ленте) и передоваться с различными энергетическими затратами (по почте, по телефону, с курьером), причем последствия (в том числе и материальные) пореданной информации совершенно не зависит от физических затрат на ее передачу. Например, легкое нажатие кнопки опускает тяжелый театральный занавес или взрывает большое здание, красный свет светофора останавливает поезд, а неожидонное неприятное известие может вызвать инфаркт. Поэтому информационные процессы не сводимы к физическим, и информация, наряду с материей и энергией, являются одной из фундаментальных сущностей окружающего нас мира.


Достижения в технике в 18-19 вв. практически целикомбыли связаны с успехами физики и химии. Благодоря имбыли созданы и успешно распространились различные преоброзователи материи и энергии: двигатели металлургические и химические производства, электрогенераторы. Эффективность их работы описывается с помощью физических понятий: мощности, грузоподъемности, количество вырабатываемой энергии. В 20 в. с развитии техники появилось устройство другого рода: средство связи, устройство автоматики, а с 40-х гг. –вычислительной техники. Начиная с последней трети 20 в. стали говорить об (информационном взрыве), называя этими слова бурный рост объемов и потоков информации. В качестве средства для хранения, переработки и передачи информации научно- технический прогресс предложил обществу компьютер (электронное – вычислительную машину, Э. В. М).

Работа компьютера имитирует (моделирует) информационную функцию человека. Из сказанного выше следует, что имеются четыре основные информационной функции человека:

Прием (ввод) информации;

Запоминание информации (память);

Процесс мышления (обработка информации);

Передача (вывод) информации. Компьютер имеет в составе устройства, выполняющие эти функции мыслящего человека:

Устройство ввода;

устройство памяти;

процессор;

устройство вывода.

Такой состав устройств вычислительного автомата был впервые предложен в прошлом веке Чарльзом Бэббиджем. Все они имелись в проекте его Аналитической машины. ЭВМ, появился в середине 20 в., сохранили тот же состав устройств. Ч. Бэббидж первым выдвинул идею программного управления работой вычислительной машины. Программа содержит команды для процессора, который решает задачу, последовательно их выполняя.


Современный компьютер –это универсальное (многофункциональное) электронное программно- управляемое устройство для работ с информацией. Компьютер в современном обществе взяли управление на себя значительную часть работ, связанных с информацией. По историческим меркам компьютерные технологии обработки информации еще очень молоды и находятся в самом начале своего развития. Поэтому они называются новыми информационными технологиями- НИТ. Еще ни одно государство на Земле не создавало информационного общества. Существует еще много потоков информации, не вовлеченных в сферу действия компьютеров. Компьютерные технологии сегодня преобразуют или вытесняют старые, до компьютерные технологии обработки информации. Текущий этап завершается построением в индустриально развитых стран глобальных всемирных сетей для хранения и обмена информацией, доступных каждой организации и каждому члену общества. Надо только помнить, что компьютерам следует поручать, что они могут делать лучше человека, и не употреблять их во вред человеку, обществу.


Объектно-ориентированный подход в информационных технологиях.

Инкапсуляцией называется объединение в объекте его свойств и возможных над ним операций (методов).

Инкапсуляция. Объект, с одной стороны, обладает определенными свойствами, которые характеризуют его состояние в данный момент времени, а, с другой стороны, над ним возможны операции, которые приводят к изменению этих свойств.

Объектно-ориентированный подход позволяет объединить статическую модель, описывающую свойства объекта и динамическую модель, описывающую их изменения.

При этом подходе доступ к изменению свойств объекта возможен только через принадлежащие этому объекту методы. Методы «окружают» свойства объекта; говорят, что свойства «инкапсулированы» в объект.

Таким образом, в объектно-ориентированном программировании центральное место занимают объекты, которые объединяют в одно целое (инкапсулируют) свойства объекта и возможные над ним операции (методы).

Если говорить образно, то объекты-это существительные. Объектом являются, например, графический примитив Окружность. Свойства объекта, т.е. его качества и характеристики (например, координаты, цвет, радиус)-это прилагательные. Методы объекта, т.е. набор операций, которой он может выполнять (например, переместить, изменить цвет)-это глаголы объекты, инкапсулирующие одинаковый перечень свойств операций, объединяются в классы. Каждый отдельный объект является экземпляром класса. Экземпляры класса могут иметь отличающиеся значение свойств.

Например, файловая система компьютера может содержать сотни и тысячи файлов. Все файлы обладают одним и тем же набором свойств (имя, положение в файловой системе и др.) и операций (переименование, перемещение или копирование и др.) и образуют класс объектов файлы.

Каждый отдельный файл является экземпляром этого класса и имеет конкретные значения свойств (имя, местоположение и др.)

Наследование определяет отношение между классами, объекты класса- потомок обладают всеми свойствами и операциями объектов класса- родитель.

Наследование. В векторных графических редакторах изображение строится из графических примитивов (точка, линия, окружность др.).

Свойства операции (методы)

Координаты (x, y) перемещение

Цвет изменение цвета

Одним из графических примитивов является класс объектов точка. В классе точка каждый объект обладает определенными свойствами (координаты, цвет), над которыми возможны соответствующие операции (перемещение, изменение цвета). Класс объектов точка можно задать таблицей,

Из класса объектов точка можно получить новые класс объектов окружность, добавив новое свойство радиус и операцию изменения радиуса.

Все объекты класса Окружность наследуют свойства и операции класса.Точка называется класс-родитель, а класс Окружность – класс-потомок.

Полиморфизм в переводе с греческого означает «много форм» .одна и та же операция над объектами различных классов может выполняться различными методами.

Полиморфизм. Часто встречается ситуация, когда над объектами различных классов можно совершать одинаковые операции.

Так, в рассмотренном выше примере над объектами различных классов Точка и Окружность можно совершать одну и ту же операцию Переместить.

Для большинства классов объектов в среде Windows &Office (папки, документы, символы и др.) также характерен набор одних и тех же операций (переименование, перемещение, копирование, удаление и т. д..).Такое единообразие очень удобно для пользователя.

Однако очевидно, что механизмы реализации этих операций неодинаковы для различных классов/.Например, для копирования папки необходимо совершить последовательность действий по изменению файловой системы, а для копирования символа внести изменения в документ. Эти операции будут выполняться различными программами, которые имеются, соответственно, в операционной системе Windows и в текстовом редакторе Word/

Таким образом реализуется полиморфизм, т. е. возможность проведения одних и тех же операций над объектами, принадлежащими различным классам, при сохранении индивидуальных методов их реализации для каждого класса.

Практическая реализация объектно-ориентированного подхода будет рассмотрена при изучении технологии объектно-ориентированного программирования на языке Visual Basic


Объектно-ориентированные языки програмирования.

Объектно-ориентированное програмирование является в настоящее время наиболее популярной технологией программирования. Объектно-ориентированное прогамирование является развитием технологии структурного программирования, однако имеет свои характерные черты.

Основной единицей в объектно-ориентированном программировании является объект, который заключает в себе, инкапсулирует как описывающие его данные (свойства), так и средства обработки этих данных (методы).

Объектно-ориентированное программироние по своей сути – это создание, приложений из объектов, подобно тому, как из блоков и различных деталей строятся дома. Одни объекты приходится полностью создавать самостоятельно, тогда как другие можно позаимствовать в готовом виде из разнообразных библиотек.

Важное место в технологии объектно-ориентированного программирования занимает событие. В качестве событий могут рассматриваться щелчок кнопкой мыши на объекте, нажатие определенной клавиши, открытие документа и т.д. В качестве реакции на события вызывает определенная процедура, которая может изменить свойства объекта, вызывать его методы и т.д.

В системах объектно-ориентированного программирования обычно используется графический интерфейс, который позволяет визуализировать процесс программирования. Появляется возможность создавать объекты, задавать им свойства и поведение с помощью мыши.

Наиболее распространенными системами объектно-ориентированного визуального программирования являются Microsoft Visual Basic и Borland Delphi.

В среде Windows &Office в качестве программных объектов могут выступать приложения, документы и т.д. Каждый из этих объектов может является исполнителем алгоритмов. Команды объекту (исполнителю) могут дать либо другие объекты, функционирующие в данной системе, либо пользователь компьютера.

Для того чтобы объект в среде Windows &Office (например, приложение Word) мог автоматически выполнить алгоритм, необходимо записать его на том формальном языке, который этот объект «понимает». Таким языком является язык программирования Visual Basic for Application (VBA), который является ядром объектно-ориентированного языка программирования Visual Basic.

Объекты и их свойства

Объекты, обладающие одинаковыми наборами свойств и методов, образуют класс объектов. Так, в приложении Word существует класс объектов документ (Documents), который обладает такими свойствами как имя (Name), местоположением (File Name) и др. Объекты этого класса обладают также к определенным набором методов, например, открытие документа, печать документа, сохранение документа и т.д.

Класс объектов может содержать множество различных документов (экземпляров класса), каждый из которых имеет свое имя. Например, один из документов может иметь имя Проба. Doc

Объекты в приложении образуют некоторую иерархию. На вершине иерархии объектов находится приложение. Так, иерархия объектов приложения Word включает в себя следующие объекты, приложение, документ, фрагмент документа, символ и др.

Полная ссылка на объект состоит из ряда имен вложенных последовательно друг друга объектов. Разделителями имен объектов в этом раду являются точки, ряд начинается с объекта наиболее высокого уровня. Например, ссылка на документ проба. Doc в приложении Word будет выглядеть следующим образом,

Application. Documents («Проба. Doc»)

Однако делать каждый раз полную ссылку на объект необязательно. Ссылку на объект можно опускать, если этот объект является активным. Например, если приложение Word активно, достаточно сделать относительную ссылку на сам документ, documents («проба. doc»).


Информация и управление. Замкнутые и разомкнутые системы управления, назначения обратной связи.

в 1948 г. в США вышла книга американского математика Норберта Винера (кибернетика, или упровление и связь в животном и машине), которая провозгласила рождение новой науке – кибернетики. Не случайно время появления этого научного направления совпало с созданием первых ЭВМ. Н. Винер прадвидел, что использование ЭВМ для упровления станет одним из важнейших их приложений, а для этого потребуются глубоки теоретический анализ самого процеса упровления. С позиции кивернетики взаимо действие между упровляющим и упровляемым объектами рассматривается с информационной точки зрения. С этой позиции оказалось, что самые разнообразные процессы управления происходят сходным образом, подчиняются одним и тем же принципам.

Обсудим, что такое управленис с кибернетической точки зрения.

УПРАВЛЕНИЕ- это есть целенаправленное воздействие управляющего объекта на объект управления, осуществляемое для организации функционирования объекта управления по заданной программе.

Простейшая ситуация- два объеекта: один- управляющий, другой –управляемый. Например, человек и телевизор, хозяин и собака, светофор и автомобиль. В первом приближении взаимодйствие между такими объектами можно описать следующей схемой:


Управляющий объект

Управляемый объект



Управляющее воздействие

В приведенных программах управляющее воздействие производится в разной форме: человек нажимает клавишу или поворачивает ручку управления телевизором, хозяин голосом подает собаке команду, светофор разными цветами управляет движением автомобилей на перекрестке.

С кибернетической точки зрения все варианты управляющих воздействий следует рассматривать как управляющую информацию, передаваемую в форме команд. В примере с телевизором через технические средства управления передаются команды типа (включить – выключить), (переключить канал). Хозяин передает собаке команды голосом. Световые сигналы светофора шофер воспринимает как команды.

В данном выше определении сказано, что управление есть целенаправленный процесс, команды отдаются не случайным образом, а с вполне определенной целью. В простейшем случае цель может быть достигнута после выполнения одной команды. Для достижения более сложной цели бывает необходимо выполнить последовательность (серию) команд. Последовательность команд, приводящая к заранее поставленной цели, называется алгоритмом. В приведенных выше примерах телевизор, собака, автомобиль являются исполнителями алгоритма, направленных на вполне конкретные цели (посмотреть интересующую передачу, выполнить определенных задание хозяина, благоприятно проехать перекресток).

Итак, мы видим, что кибернетический подход объединяет как материальные, так и информационные процессы, в которых имеет место управление.

Если внимательно обдумать рассматриваемые примеры, то приходишь к выводу, что строго в соответствии со схемой на рис. 1 работает только система (светофор- автомобили). Светофор (не глядя) управляет движением машин, не обращая внимание на обстановку на перекрестке. Совсем иначе протекает процесс управлением телевизором или собакой. Прежде чем отдать очередную команду, человек смотрит на состояние объекта управления, на результат выполнения предыдущей команды. Если он не нашел нужную передачу на данном канале, то переключит телевизор на следующий канал; если собака не выполнила команду (лежать) хозяин повторит эту команду. Из этих примеров можно сделать вывод, что управляющий не только отдает команды, но и принимает информацию от объекта управления о его состоянии. Этот процесс называется обратной связью.

Обратная связь – это процесс передачи информации о состоянии объекта управления к управляющему объекту.

Управляющее воздействие


Управляющий объект

Управляемый объект




Управлению с обратной связью соответствует следующая схема:

Системы управления с обратной связью называются замкнутыми системами управления, а системы управления, не имеющие корректирующей обратной связи, - разомкнутыми.

В варианте управления без обратной связи алгоритм может представлять собой только однозначную последовательность команд. Например, алгоритм работы светофора:

Красный –желтый –зеленый –красный – желтый –зеленый и т. д.

Такой алгоритм является линейным, или последовательным.

При наличии обратной связи алгоритм может быть более гибким, допускающий альтернативы и повторения. При этом сам управляющий должен быть достаточно (интеллектуальным) для того, чтобы, получив информацию по обратной связи, проанализировать ее и принять решение о следующей команде. Во всех случаях, где управляющим является человек, это условие выполнено.

Если место светофора на перекрестке дорог работает милиционер –регулировщик, то управление движением станет более рациональным. Регулировщик следит за скоплением машин на пересекающихся дорогах и дает (зеленую улицу) в том направлении, в котором в данный момент это нужнее. Нередко из-за (безмозглого) управления светофора на дорогах возникают (пробки), и тут непременно приходит на помощь регулировщик.

Таким образом, при наличие обратной связи и (интеллектуального) управляющего, алгоритмы управления могут иметь сложную структуру, содержавшую альтернативные команды (ветвления) и повторяющиеся команды (цикл).

Системы, в которых роль управляющего поручает компьютеру, называются автоматическими системами с программным управлением. Для функционировании такой системы, во-первых, между ЭВМ и объектом управления должна быть обеспечена прямая и обратная связь, во-вторых, в память компьютера должна быть заложена программа управления (алгоритм, записанный на языке программирования). Поэтому такой способ управления называют программным управлением.


Еще раз сформулируем суть кибернетического подхода к процессу управления:

управление есть информационное взаимодействие между объектом управления и управляющей системой;

управляющая информация передается по линии прямой связи в виде команд управления;

по линии обратной связи передается информация о состоянии объекта управления;

последовательность управляющих команд определяется алгоритмом управления;

без учета обратной связи алгоритм может быть только линейным, при наличии обратной связи алгоритм может иметь сложную структуру, содержавшую ветвления и циклы.

Кибернетика по такой схеме описывает управления в технических системах, в живом организме и даже в человеческом обществе.


Технология логического программирования. Отличие логических языков программирования от алгоритмических языков программирования.

Представление о логических моделях

Наша жизнь представляет собой непрерывную цепь больших и маленьких логических проблем. Путем рассуждений и выводов мы принимаем решение, т.е. моделируем свое дальнейшее поведение.

Логические модели помогают разрешить не только житейские, но и научные проблемы.

Логические модели это модели, в которых на основе анализа различных условий принимается решение.

Таким образом, логические модели основываются на рассуждениях и операциях с ними. При этом, само собой разумеется, учитываются и бесспорные истины, день сменяет ночь, человек не может быть одновременно в двух местах, сын всегда моложе отца и т.п.

Перед учеными, исследователями нередко встает задача сделать определенные заключения на основании множества разобщенных данных и фактов. И тут им не помощь приходят логические модели.

Обычно выдвигается рабочая гипотеза, которая проверяется сопоставлениями, сравнениями исходных данных и промежуточных данных и промежуточных результатов, прибегая к помощи логических рассуждений. Если теоретические выводы противоречат исходным фактам, бесспорным истинам или поставленным условиям, то выдвигается другая гипотеза и рассуждения повторяются снова и снова, пока в конце концов не принимается верное решение или не формулируется однозначный ответ.

Логические высказывания и условия.

Человеческая речь состоит из рассуждений (высказываний). Высказывания несут в себе конкретное смысловое содержание (то, о чем в них говорится). Но можно рассматривать их с точки зрения правдивости, правда ли то, о чем говорится. В этом случае, что высказывание может принимать два значения, «истина» и «ложь». Например, высказывание «Земля состоит на трех китах» ложно, а высказывание «Земля вертится» истинно. Высказывания, рассматриваемые с точки зрения их истинности и ложности, называются логическими высказываниями. Еще древние философы размышляли над правилами построения логических верных рассуждений.

От правильности или ложности высказывания часто зависит наше дальнейшее поведение. Например, выражение «на улице дождь» может быть и истинным и ложным, поэтому в конкретной ситуации предполагает различные действия, «если на улице дождь, возьми зонт». Естественно, если дождя нет, то зонт брать не надо. Рассуждения, мы сталкиваемся с тем, что в обычной жизни называется условием, «если хорошо закончишь четверть, то пойдешь в поход», «если среднесуточная температура воздуха ниже 80С, пора начинать периодическое протапливание помещений». В приведенных примерах после слова «если» указано условие, по которому принимается решение. Таким образом, анализируя условия можно строить ту или иную модель поведения.

Условием называется логическое высказывание, которое может принимать два значения, истина и ложь. В зависимость от его значения определяется дальнейший ход действий.

В математике и технике условия формулируются более строго и содержат специальные операции сравнения (больше, меньше, равно)примеры использования условий в математике, «если X>0, то модуль числа равен самуму числу», «если в линейной функции y=kx+b коэффициент b=0, то прямая проходит через начало координат».

Анализ условий используется в различных областях техники, «если температура воды 1000С, то вода переходит в газообразное состояние», «если плотность тела больше 1000кг/м3, то оно тонет в воде».

Итак, чтобы сделать выбор, надо проанализировать условие. В общем случае схема может выглядеть так, «если условие выполняется, то» или «если условие выполняется, то…в противном случае…»

Чтобы узнать, истинно или ложно условие, удобно сформулировать его в форме вопроса, на который можно ответить коротко и точно, «да» или «нет». Например, на вопрос «выбранный шар белый?» следует ответить «да» только в том случае, если шар белый. В любом другом случае (шар красный, зеленный, серо-буро-малиновый) следует ответить «нет».

Нельзя допустить двусмысленности в формулирование вопроса. Вопрос, «вы не одобряете деятельность администрации?» является некорректным, т.к. непонятно, как на него ответить, «да! На одобряю!» или «нет! Не одобряю!».

Логические операции

Условие является простым, если сразу модно однозначно ответить на вопрос-«да» или «нет». Но существуют и сложные условия, состоящие из нескольких простых, каждое из которых может быть истинным и ложным.

В жизни мы часто пользуемся сложными условиями. Например, ребенок ставит условия родителям, «если купите мне велосипед и ролики, я постараюсь хорошо учится».

Совершенно ясно, что ребенок обещает учится хорошо только при одновременном выполнении двух условий (если будут и велосипед и ролики).

Другой пример, для успешной сдачи экзамена нужны знания или везение.

Из этого примера следует, что успех на экзамене обеспечен, если человек хорошо подготовлен, или он «везунчик», или и то и другое вместе.

Таким образом, в жизни простые условия часто объединяются в более сложные с помощью союзов И, ИЛИ. По аналогии с жизнью, самыми распространенными логическими операциями являются операции «ИЛИ» (логическое сложение) и «И» (логическое умножение).


Язык и информация. Естественные и формальные языки.

Как всякий инструмент, язык требует правильного обращения. Только в этом случае можно гарантировать получения с его помощью необходимую и достоверную информацию.

Предположим, что один человек рассказывает другому содержание какого-нибудь кинофильма. Его собеседник не знает содержание этого фильма или иными словами, его предметной области. От рассказчика он узнает только имена предметов, о которых идет речь. Его задача состоит в том, чтобы понять, о чем этот кинофильм или иначе говоря соответствием имя с некоторыми предметами. Если он этого делать не сможет, то он либо не поймет, о чем ему говорит собеседник, либо поймет неправильно. Это зависит от многих причин в частности от того, насколько собеседники владеют языком, насколько однозначно они понимают смысл отдельных слов. Может случится и так, что собеседник вообще не знаком с предметом рассказа. Например, попробуйте объяснить, человеку который некогда не видел телевизор, а вы будите ему объяснять построение его системы.

Важнейшим методом в передачи информации является ее кодирование и декодирование. В настоящие время существуют несколько универсальных приемов кодирования информации. Одним из самых важных, играющую большую роль в информатике и компьютерной технике приемов – это кодирование помощью «0» и «1». Этот способ настолько универсален, что с его помощью можно кодировать, например, рисунки, те клетки в которые попал рисунок, обозначим «1», а все остальное «0».

В результате получится код рисунка, который можно представить в памяти компьютера.

Настолько важно, чтобы собеседник правильно вас понимал. Это становится особенно важным, когда «собеседник» является компьютер, который не может ничего «домыслить» и понимает всю представленную информацию, компьютер должен суметь ее переработать, то есть быть в состоянии совершить определенные действия.

Естественные языки – это в основном носят национальный характер.

Формализованные языки. Познавая окружающий мир, человек наделяет предметы и явления именами. Это приводит к тому, что в сознании людей объект замещается именем, от которого требуется лишь одно, помочь опознать названный объект.

Возможность принципиального разделения предмета и его имени есть основной тезис формализации. Проиллюстрировать его можно очень простым примером. Если мы напишем слово «корова» то это вовсе не то же, что известное всем животное. Можно стереть у этого слова букву «а» и это не будет означать, что самой корове отрезали хвост. Сегодня это мысль кажется почти очевидной. Однако, чтобы прети к ней, потребовалось столетия.

Появление самой идеи компьютера стало возможным только после того, как было полностью осознано значение основного тезиса формализация. Еще совсем недавно люди считали, что имя неотделимо от обозначаемого им объекта.

Возможность принципиального разделения изучаемого объекта и его имени (знака) позволяет рассматривать язык (систему языков) как универсальную модулирующую среду. Естественный язык представляет самое широкие возможности для моделирования. Однако неоднозначность понимания многих языковых конструкций нередко создает трудности. Например, если работу дана на русском языке «взять большой красный шар», то он может действовать двояко, взять данный красный шар или начать перебирать имеющиеся красные шары. Следовательно, чтобы использовать язык для построения моделей, особенно таких которые в дальнейшем будут исследоваться с помощью компьютера, он должен предварительно уточнен, или как иначе говоря, формализован.


двоичное кодирование информации.

Система счислений- совокупность правил наименования и изображения чисел с помощью набора символов, называемых цифрами. Система счисления делится на позиционные и непозиционные. Пример непозиционной системы счисления- римская, к позиционным системам счисления относится двоичная, десятичная, восьмеричная, шестнадцатеричная. Здесь любое число записывается последовательностью цифр соответствующего алфавита, причем значение каждой цифры зависит от места (позиции), которое она занимает в этой последовательности. Например, в записи 555, сделанной в десятичной системе счисления, использована одна цифра 5, но в зависимости от занимаемого ею места она имеет разное количественное значение- 5 единиц, 5 десятков, 5 сотен. Поэтому справедливы равенства (подстрочные индексы применим для указания, в какой системе счисления записано число).

555,5 10 =5*10 2 +5*10 1 +5*10 0 +5*10 -1 ,

11,01 2 =1*2 1 +1*2 0 +0*2 -1 +1*2 -2

рассмотрим арифметические действия в двоичной системе счисления. Сначала отметим, что 1 2 +1 2 =10 2 . Почему? Во-первых, вспомним, как в привычной десятичной системе счисления появилась запись 10. К количеству, обозначенному старшей цифрой десятичного алфавита 9, прибавим 1. Получится количество, для обозначения которого одной цифрой в алфавите цифр уже не осталось. Приходится для полученного количества использовать комбинацию двух цифр алфавита, то есть представлять данное количество наименьшим из двухразрядных чисел: 9 10 +1 10 =10 10 . Аналогичная ситуация складывается в случае двоичной системы счисления. Здесь количество, обозначенное старшей цифрой 12 двоичного алфавита, увеличивается на единицу. Чтобы полученное количество представить в одной системе счисления, также приходится использовать два разряда. Для наименьшего из двухразрядных чисел здесь тот же единственный вариант 102, во-вторых, важно понять, что 10 2 10 10 . строго говоря, в двоичной системе счисления это и читать надо не «десять», а «один ноль». Верным являются соотношение 10 2 =2 10 . здесь слева и справа от знака равенства написаны разное обозначения одного и того же количества. Это количество просто записано с использованием алфавитов разных систем счисления- двоичная и десятичная. Вроде, как мы на русском языке скажем «яблоко», а на английском про тот же предмет –«apple», и будем правы в обоих случаях.

Сложение в двоичной системе счисления. После этих предварительных рассуждений запишем правило выполнения в двоичной системе счисления арифметического сложения одноразрядных чисел,

0+0=0 1+0=1 0+1=1 1+1=10.

С
ледовательно, используя известное запоминание в уме при переносе переполнения в старший разряд, получаем,


Вычитание в двоичной системы счисления. Исходя из того, что вычитание есть действие, обратное сложению, запишем правило арифметического вычитания одноразрядных чисел в двоичной системе счисления,

0-0=0 1-0=1 1-1=0 10-1=1.

Используя это правело можно проверить правильность произведенного выше

сложения вычитание из полученной суммы одного из слагаемых. При этом, чтобы вычислить в каком-либо разряде единицу из нуля, необходимо «занимать» недостающее количество в соседних старших разрядах (так же, как в десятичной системе счисления поступают при вычитании большого числа из меньшего).

Умножение в двоичной системе счисления. Правила умножения одноразрядных двоичных чисел наиболее очевидны,

0*0=0 1*0=0 0*1=0 1*1=1.

В
таком случае, записывается столбиком процесс умножения двух много разрядных двоичных чисел, получим следующий результат,


Затем, что при решении этого примера понадобилось в каждом разряде найти сумму четырех одноразрядных двоичных чисел. При этом мы учли, что в двоичной системе счисления.

1+1+1+1=11+1=100.

Д
еление в двоичной системе счисления осуществляется так же как и в десятичной, с использованием умножения и вычитания,


Перевод числа из десятичной системы счисления в двоичную (1 способ). Известно, что в десятичной системе счисления 1+1+1=3, а 1+1+1+1=4, следовательно,

3 10 =11 2 , 4 10 =100 2 .

Очевидно, что прибавлять по единице, чтобы найти представление любого десятичного числа в двоичной системе счисления, нерационально. Не приводя обоснований и общих правил перевода представления числа из одной позиционной системы счисления в другую, ограничимся краткими примерами.

Перевод целых чисел. Пусть требуется найти представление числа 12 10 в двоичной системе счисления (задание может быть сформулированное и так, перевести число12 из десятичной в двоичную систему счисления, или 12 10 X 2 , где X искомое представление).

П


оступаем следующим образом, делим, начиная с 12, каждое получающееся частное на основание системы, в которую переводим число, то есть на 2. Получаем.

Затем в направлении, указанном стрелкой, начиная с последнего частного (в нашем случае она всегда будет равна1), записываемого в старший разряд формируемого двоичного представления, фиксируем все остатки. В итоге получаем ответ 12 10 =1100 2 . .

П
еревод десятичных дробей, меньше единицы. Если указанный перевод необходимо осуществить для числа меньше единицы, допустим для 0,25, то схема наших действий изменится,

Для удобства проведем вертикальную линию, отделяющую целую часть от дробной. Умножим оказавшуюся слева дробную часть на 2. Результат записываем на следующей строке, причем оставляем справа от вертикали столько разрядов, сколько было у исходной дробной части. Так как при этом произведениеравно50, то разряд слева от вертикали записываем 0. Повторяем процесс умножение на 2 числа, стоящего справа от вертикали. Результат умножения 50*2=100. Следовательно, при записи результата в следующую строку схема справа от вертикали оказываются два нуля, а единица переносится в разряд слева от вертикали. На этом процесс умножения на 2 в данном примере заканчивается, так как мы уже получили точный ответ. Ответ образует число, прочитываемое слева от вертикали направлении, указанном стрелкой (сверху вниз). Очевидно, что, если продолжать умножение дальше, мы должны были бы умножать на 2 нули справа от вертикали и, следовательно, в каждой строке слева от вертикали записывать только нули. Это были бы незначащие нули в получаемой дроби. Поэтому, получив в результате серии умножений на 2 справа от вертикали одни нули, мы заканчиваем процесс перевода десятичного дробного числа меньше единицы в двоичную систему счисления и записываем ответ 0,25 10 =0,01 2 .

П
онятно, что гораздо чаще мы встречаем такую исходную десятичную дробь, когда умножение на 2 чисел, стоящих справа от вертикали, не приведет к появлению там один лишь нулей. Пусть, например, по условию задачи требуется перевести в двоичную систему счисления десятичную дробь 0,3. Поступаем описанным выше образом,

В этом случае точный ответ не может быть получен, так как процесс перевода приходится оборвать и записать с некоторой заданной точностью приблизительный ответ (конкретно в этом примере- до тех знаков после запятой), 0,3 10 ≈0,010 2 .

Перевод десятичных дробей больше единицы. В этом случае необходимо, отделив в исходном десятичном числе целую и дробную часть, провести для каждой из них независимый перевод в двоичную систему счисления указанным способом. Рассмотрим два примера, используя уже полученные результаты,

А) 12,25 10 =12 10 +0,25 10 =1100 2 +0,01 2 =1100,01 2

Б) 12,3 10 =12 10 +0,3 10 ≈1100 2 +0,010 2 ≈1100,010 2

В примере а) ответ получен точным, тогда как в примере б)из-за приблизительности перевода дробной части окончательный ответ получится также приближенный.

Наконец, остановимся на преимуществах и недостатках использования двоичной системы счисления по сравнению с любой другой позиционной системой счисления. К недостаткам относится длина записи, представляющей двоичное число. Основные преимущества- простота совершаемых операций, а также возможность осуществлять автоматическую обработку информации, реализуя только два состояния элементов компьютера.


Магистрально- модульный принцип построения компьютера.

Компьютер ЭВМ- это универсальный многофункциональное электронное программно- управляемое устройство для хранения, обработки и передачи информации.

Архитектура ЭВМ- это общее описание структуры и функции ЭВМ на уровне, достаточном для понимание принципов работы и системы команд ЭВМ. Архитектура не включает в себя описание деталей технического и физического устройства компьютера (4).

Основные компоненты архитектуры ЭВМ: процессор, внутренняя (основная) память, внешняя память, устройства ввода, устройство вывода.

Самым массовым типов ЭВМ: процессов внутренняя (основная) память, внешняя память, устройства ввода, устройства вывода.

Самым массовым типом ЭВМ в наше время является персональный компьютер (ПК). ПК- это малогабаритная ЭВМ, предназначена для индивидуальной работы пользователя, оснащения удобным для пользователя (дружественным) программным обеспечением.

Практически все модели современных ПК имеют магистральный тип архитектуры (в том числе самые распространенные в мире IBM PC и Apple Macintosh). Ниже представлена схема устройства компьютеров, построенных по магистральному принципу.


Процессор

Внутренняя помять.



Информационная магистраль (шина данных +адресная шина + шина управления)



дисковод

клавиатура

Периферийные устройства

Назначение процессора:

выполнить операции обработки информации.

Память компьютера делится на внутреннюю и внешнюю. Внутренняя память ПК включает в себя оперативное запоминающее устройство (ОЗУ) и постоянно запоминающее устройство (ПЗУ).

ОЗУ – быстрая, полупроводниковое, энергозависимая память. В ОЗУ хранится исполняемая в данный момент программа и данные, с которыми она непосредственно работает.

ОЗУ- это память, используемая как для чтения, так и для записи информации. При отключении электропитания информация в ОЗУ исчезает (энергозависимость).

ПЗУ- это быстрая, энергонезависимая память. ПЗУ-это память, предназначена только для чтения. Информация заносится в нее один раз (обычно в заводских условиях) и сохраняется постоянно (при включенном и выключенном компьютере). В ПЗУ хранятся информация, присутствие которой постоянно необходимо в компьютере, обычно это компоненты операционной системы (программы контроля оборудования, программа первоначальной загрузки ЭВМ и пр.).

Информационная связь между устройствами компьютера осуществляется через информационную магистраль (другое название- общая шина). Магистраль это кабель, состоящий из множества проводов. По одной группе проводов (шина данных) передается обрабатываемая информация, пот ней передаются управляющие сигналы (например, сигнал готовности устройства к работе, сигнал к началу работы устройства и др.). количество одновременно передаваемых по шине бит называется разрядностью шины. Всякая информация, передаваемая от процессора к другим устройствам по шине данных, сопровождается адресом, передаваемым по адресной шине (как письмо сопровождается адресом на конверте). Это может быть адресная ячейка в оперативной памяти или адрес (номер) периферийного устройства.

В современном ПК реализован принцип открытой архитектуры. Этот принцип позволяет менять состав устройства (модулей) ПК. К информационной магистрали могут подключится периферийные дополнительные устройства, одни модели устройств могут замениться на другие. Возможно увеличение внутренней памяти, замена микропроцессора на более совершенный. Аппаратное подключение периферийного устройства к магистрали осуществляется через специальный блок- контролер (другие названия – адаптер). Программное управление работой устройства производится через программу – драйвер, которая является компонентой операционной системы. Следовательно, для подключения нового периферийного устройства к компьютеру необходимо использовать соответствующий контроллер и установить в ОС подходящий драйвер.


основные характеристики (разрядность, адресное пространство и др.) процессора компьютера.

Процессор – центральное устройство компьютера.

Назначение процессора:

управлять работой ЭВМ по заданной программе;

выполнять операции обработки информации.

Микропроцессор (МП)- это сверхбольшая интегральная схема, которая реализует функции процессора ПК. Микропроцессор создается на полупроводниковом кристалле (или нескольких кристаллах) путем применения сложной микроэлектронной технологии.

Возможности компьютера как универсального исполнителя по работе с информацией определяются системой команд процессора. Эта система команд представляет собой язык машинных команд (ЯМК). Из команд ЯМК составляются программы управления работой компьютера. Отдельная команда определяет отдельную операцию (действие) компьютера. В ЯМК существуют команды, по которым выполняются арифметические и логические операции, операции управления последовательностью выполнения команд, операции данных из одних устройств памяти в другие и пр.


В состав процессора входят следующие устройства: устройство управления (УУ), арифметико-логические устройство (АЛУ), регистры процессорной памяти.

УУ управляет работой всех устройств компьютера по заданной программе. (Функцию устройства управления можно сравнить с работой дирижера, управляющего оркестром).(Своеобразной “партитурой” для УУ является программа).

АЛУ- вычислительный инструмент процессора. Это устройство выполняет арифметические и логические операции по командам программы.

Регистры – это внутренняя память процессора. Каждый из регистров служит своего рода черновиком, используя который процессор выполняет расчеты и сохраняет промежуточные результаты. У каждого регистра есть определенное назначение. В регистр-счетчик команд (С. ч. К) помещается адрес той ячейки памяти ЭВМ, в которой хранится очередная исполняемая команда программы. В регистр команд (РК) помещается эта команда на время ее исполнения команды. Полученный результат, может быть переписан из регистра в ячейку ОЗУ.

Характеристики процессора.

тактовая частота.

Процессор работает в тесном контакте с микросхемой, которая называется генератором тактовой частоты (ГТЧ). ГТЧ вырабатывает периодические импульсы, синхронизирующие работу всех узлов компьютера. Это своеобразный метроном внутри компьютера. В ритме этого матрона работает процессор. Тактовая чистота равна количеству тактов в секунду. Такт-это промежуток времени между началом подачи текущего импульса и началом подачи следующего. На выполнение процессором каждой операции отводятся определенное количество тактов. Ясно, что если метроном стучит быстрее, то и процессор работает быстрее. Тактовая частота измеряется в мегагерцах- МГц. Частота в 1 МГц соответствует миллиону тактов в 1 секунду. вот некоторые характерные тактовые частоты микропроцессоров: 40 МГц, 60 МГц.

разрядность процессора.

Разрядностью называют максимальное количество разрядов двойного кода, которые могут обрабатываться или передоваться процессором одновременно. Разрядность процессора определяется разрядностью регистров, в которые помещаются обрабатываемые данные. Например, если регистр имеет размер 2 байта, то разрядность процессора равна 16(8*2).

Ячейка – это группа последовательных байтов ОЗУ, вмещающая в себя информацию доступную для обработки отдельной командой процессора. Содержимое ячейки памяти называется машинным словом. Очевидно, размеры ячейки памяти и машинного слова равен разрядности процессора. Обмен информацией между процессором и внутренней памятью производится машинными словами.

Адрес ячейки памяти равен адресу младшего байта (байта с наименьшим номером), входящего в ячейку. Адресация как байта, так и ячеек памяти начинается с нуля. Адреса ячеек кратны количеству байтов в машинном слове (изменяются через 2, или через 4, или через8). Еще раз подчеркнем: ячейка –это вместилище информации, машинное слово –это информация в ячейке.


Адресное пространство.

По адресной шине процессор передает адресный код- двоичное число, обозначающее адрес памяти или внешнего устройства, куда направляются информация по шине данных. Адресное пространство- это диапазон адресов(множество адресов), к которым может обратиться процессор, используя адресный код.

Если адресный код содержит n бит, то размер адресного пространства равен 2 n байтов. Обычно размер адресного кода равен количеству линий в адресной шине (разрядность адресной шины). Например, если компьютер имеет 16- разрядную адресную шину, то адресное пространство равно 2 16 =64 Кб, а при 32-разрядной адресной пространство равно 2 32 =64 Кб.

Примеры характеристик микропроцессоров:

МП intel-80386: пространство- 232 байта=4Гб, разрядность-32, тактовая частота- от 25 до 40 МГц;

МП Pentium: адресное пространство-232 байта=4Гб, разрядность-64Гб, тактовая частота- от 60 до 100 МГц.


количество информации, единица измерения количества информации.

Уже в процесс зарождения человеческого общества возникла необходимость согласования совместных действий (добывание пищи, охота, отражение врагов и др.), что предполагает средства общения между членами коллективных действий. Вначале это были жесты, мимика, отдельные звуки, а затем- устная и письменная речь, средства связи. Люди стали иметь возможность обмениваться сведениями, опытом знаниями между собой, а также передавать все это, что сегодня называется информацией, из поколения в поколение. Мы получаем информацию из окружающего мира с помощью органов чувств и путем обработки ее нашим мозгом.

Сообщения и информация – это центральные понятия информатики. Хотя в обыденной жизни эти понятия употребляются как синонимы, но в более строгом пономании между ними есть опредиленные отличия. Эти отличия проявляются уже в токой фразе, “из этого сообщения я не получил никакой информации”.

Поэтому можно опредилить следующие отношения между этими понятиями, информация передается посредством сообщения. Следует отметить, что понятие “информация” является достаточно широким. И поэтому затруднени опредиление его, в строгом смысле, через более широкое понятия. В этом случае понимания понятия идет через описание его свойств и отношений с другими понятиями.

Все, что делает человек, так или иначе связано с использованием информации, и эти объемы информации, которые необходимо обработать человеку, резко возросли (информационный взрыв). Необходимость обработки больших объемов информации с большой оперативностью (быстротой) потребовала создания специальных устройств- электронных вычислительных машин (компьютеров). Наука, изучающая законы и методы получения, обработки, накопления, передачи информации с помощью ЭВМ, называется информатикой.

Однако информационные потоки имеют и у животных, насекомых, птиц. Изучение законов передачи и использования информации в биологических, технических, социальных, и ддругих системах занимается другая наука- кибернетика, которая тесно связана с информатикой.

Для опредиления количества информации используется единица измерения –бит (от англ. Bit, образовано от сочетания binary digit-двоичная цифра). Один бит – количество информации, содержащееся в сообщении «да» или «нет» (в двоичном коде «1» и «0»).

Так как бит – это наименьшее количество информации, то для измерения больших объемов применяются более крупные единицы измерения. Отношение между единицами следующее.

1байт- 8 бит

1килобайт (КБайт)- 2610бита==1024 байта

1мегабайт (Мбайт)- 1024 КБайт

1гигабайт (Гбайт)- 1024 Мбайт

«кило» с системе измерений (система СИ) обозначает число 1000, но в вычислительной технике это 1024 байта. Поэтому, если говорят, «64 Кбайта», то это означает 64*1024 или 65536 байтов. Мегабайт, в свою очередь, обозначает 1024*1024 или 1048576 байтов. В этих же единицах (а именно, байт, КБайт, Мбайт, Гбайт) измеряются и объемы памяти в компьютере.


Внешняя память компьютера, носители информации (гибкие и жесткие диски, CD-ROM диски).

Сохранение информации для его последующего ее использования или передачи другим людям всегда имело определяющие значение для развития человеческой цивилизации. До появления ЭВМ с этой целью человек научился использовать великое множество средств: книги, фотографии, магнитофонной записи и др. возросшие к концу 20 в. потоки информации, необходимость сохранения ее в больших объемах и появление ЭВМ способствовали разработки и применению носителей информации, обеспечивающих возможность долговременного ее хранения в более компактной форме. К таким носителям относятся гибкие и жесткие магнитные диски и так называемые диски CD-ROM. Существенное значение имеют их показатели, как информационная емкость, время доступа к информации, надежность ее хранения, время базовной работы.

Устройства которые обеспечивают запись информации на носители, а также ее поиск и считывание в оперативную память, называют накопителями (дисководами).

В основу записи, хранения и считывания информации положены два принципа- магнитный и оптический, которые обеспечивают сохранение информации и после выключение компьютера.

В основе магнитной записи лежит цифровая информация (в виде нулей и единиц), преобразованная в переменный электрический ток, который сопровождается переменным магнитным полем. Магнитное покрытие диска представляет собой множество мельчайших областей спонтанной намагниченности (доменов). Злектрические имульсы, поступая на головку дисковода, создают внешнее магнитное поле, под воздействием которого собственные магнитные поля доменов ореинтируются в соответствии с его направлением. После снятия внешнего поля на поверхности дисков в результате записи информации остаются зоны остаточной намагниченности, где намагниченный участок соответствует 1, а ненамагниченный-0. При считывании информации намагниченные участки носителя вызывают в головке дисковода импульс тока (явление электромагнитной индукции).

Среди магнитов дисков (МД) используется гибкие и жесткие.

Гибкие МД (ГМД) предназначены для переноса документов и программ с одного компьютера на другой, хранение архивных копий (билет №6) и информации, не используемой постоянно на компьютере. Гибкий МД диаметром 5,25 дюйма (133мм) в настоящее время может хранить до 1,2 Мб информации. Такие диски двусторонние, повышенной плотности записи. Скорость вращения диска, находящегося в конверте из тонкой пластмассы, - 300-360 об/мин. ГМД диаметром 3,5 дюйма (89мм) имеют емкость 1,4Мб. Защита магнитного слоя является особенно актуальной, поэтому сам диск спрятан в прочный пластмассовый корпус, а зона контакта головок с его поверхностью закрыта от случайных прикосновений специальным шторкам, которая автоматически отодвигается только внутри дисковода.

Контролер дисковода включает двигатель вращения, проверяет, закрыт или открыт вырез, запрещающий операции записи, устанавливает на нужное место головку чтения/записи.

Жесткий магнитный диск (ЖМД), или винчестер, предназначен для постоянного хранения информации, используемой при работе с компьютером: программ операционной системы, часто используемых пакетов программ, текстовых редакторов и т. д. Современный ЖМД имеют скорость вращения от 3600 до 7200 об/мин. Это может быть стеклянный диск (металлической поверхностной пленкой, например, кобальтовой), не чувствительной к температуре, с плотностью записи на 50% выше, чем у диска из алюминия. Последние разработки позволяют обеспечить плотность записи 10 Гбит на квадратный дюйм, что в 30 раз больше обычной. Головка при вращении находится над диском на расстоянии 0,13 микрона (в 1980 г. - 1,4 микрона). Жесткие магнитные диски –это часто несколько дисков на одной оси, головки считывания/записи передвигаются сразу по всем поверхностям. Информационная емкость - до800 Мб- 9Гб.

Любой магнитный диск первоначально к работе не готов. Для приведения его в рабочее состояние он должен быть отформатирован т. е. Должна быть создана структура диска. Структура ГМД- это магнитное концентрические дорожки, разделенные на сектора, помеченные магнитными метками, а у ЖМД есть еще и цилиндры- совокупность дорожек, расположенных друг над другом на всех рабочих поверхностях дисков. Все дорожки магнитных дисков на внешних цилиндрах больше, чем на внутренних. Следовательно, при одинаковом количестве секторов на каждой из них плотность записи на внутренних дорожках должно быть больше,чем на внешних. Количество секторов, емкость сектора, а следовательно, и информационная емкость диска зависит от типа дисковода и режима форматирования, а также от качества самих дисков.

Диски CD-ROM (Compact disk read memory) обладает емкостью до 3Гб, высокой надежностью хранения информации, долговечностью (прогнозируемый срок его службы при качественном исполнении – 30-50 лет). Диаметр диска может быть как 5,25дюйма, так и 3,5. Процесс изготовления состоит из нескольких этапов. Начало подготавливают информацию для мастер- диска (первого образца), изготавливает его и матрицу тиражирования. Принцип записи и считывания – оптический. Закодированная информация наносится на мастер- диск лазерным лучом, который создает на его поверхности микроскопические впадины, разделяемые плоскими участками. Цифровая информация представляет чередование впадин (не отражающих пятен) и отражающих свет островков. Копии негатива мастер- диска (матрицы) используются для прессования самих компакт-дисков. Тиражированный компакт- диск состоит из поликарбонатной основы, отражающего и защитного слоев. В качестве отражающей поверхности обычно используется тонко напыленный алюминий. В отличие от магнитных дисков, дорожки которых представляют собой концентрические окружности,CD-ROM имеет всего одну физическую дорожку в форме спирали, идущей от наружного края диска к внутреннему.

Считывание информации с компакт- диска происходит при помощи лазерного луча, который попадая на отражающий свет островок, отклоняется на фотодетектор, интерпретирующий его как двоичную единицу. Луч лазера, попадающий во впадину, рассеивается и поглощается – фотодетектор фиксирует двоичный ноль.

В то время как все магнитные диски вращаются с постоянным числом оборотов в минуту т.е. с неизменной угловой скоростью, CD-ROM вращается с переменной угловой скоростью чтобы обеспечить постоянную линейную скорость при чтении. Таким образом, чтение внутренних секторов осуществляется при большем числе оборотов, чем чтение наружных. Именно этим объясняется довольно низкая скорость доступа к данным для чтения CD-ROM (от 150 до 400мс при скорости вращения до 4500 об/мин) по сравнению с винчестером.

Скорость передачи данных, определяется скоростью вращения диска и плотностью записанных на нем данных, составляет не менее 150 кб/с и доходит до 1,2 Мб/с.

Для загрузки компакт- диска в дисковод используется либо одна из разновидностей выдвижной панели, либо специальная прозрачная кассета. Выпускают устройства во внешнем исполнении, которые позволяют самостоятельно записывать специальные компакт- диски. В отличие от обычных, данные диски имеют отражающий слой из золота. Это так называемые перезаписываемые CD-R. Подобные диски обычно служат как мастер- диски для дальнейшего тиражирования или создания архивов.

Резерв повышения емкости- повышение плотности записи путем уменьшения длины волны лазера. Так появились компакт диски способные хранить почти 4,7 Гб информации на одной стороне и 10 Гб информации на двух сторонах. Планируется также создание двухслойной системы записи, т.е. когда на одной стороне носителя будут две разнесенные по глубине поверхности с записанными данными. В этом случае информационная емкость компакт- диска возрастет до 8,5 Гб на одной стороне. Одним из самых жизнеспособных устройств, предназначенного для хранения данных, могут оказаться магнитооптические диски. Дело в том, что CD-ROM ,а в работе с ней они оказываются медленнее, чем жесткие магнитные диски. По этому обычно с компакт- дисков информацию переписывают на МД, с которыми и работают. Такая система не годится, если работа связанна с базами данных, которые ввиду большой информационной емкости как раз выгоднее размещать на CD-ROM. Кроме того, компакт- диски, используемые в настоящий момент на практике, не являются перезаписываемыми.

Магнитооптические диски лишены таких недостатков. Здесь объедины достижения магнитной и оптической технологий. На них можно записывать информацию и быстро считывать ее. Они сохраняют все преимущества ГМД (переносимость, возможность отдельного хранения, увеличение памяти компьютера) при огромной информационной емкости.


программное управление работой компьютера. Программное обеспечение компьютера.

Вы уже знаете, как широко используется ЭВМ. С их помощью можно печатать книги, делать чертежи и рисунки, можно создавать компьютерные справочники на любую тему, производить расчеты и даже беседовать с компьютером на определенную тему, если занести в его память базу знаний в соответствующей предметной области.

Сейчас речь пойдет еще об одном важном приложении компьютерной техники- об использовании ЭВМ для управления.

Н Винер предвидел, что использование ЭВМ для управления станет одним из важнейших их приложений, а для этого потребуется глубокий теоретический анализ самого процесса управления. Не случайно время появления кибернетики совпало с созданием первых ЭВМ.

С точки зрения кибернетики взаимодействие между управляющих и управляемым объектами рассматривается как информационный процесс. С этой позиции оказалось, что самые разнообразные процессы управления происходят сходным образом, подчиняются одним и тем же принципам. Обсудим, что же такое управление с кибернетической точки зрения.

Управление есть целенаправленное взаимодействие объектов, одним из которых являются управляющими, другие- управляемыми. Простейшая ситуация – два объекта, один- управляющий, второй управляемый. Например, человек и телевизор, хозяин и собака, светофор и автомобиль. В первом приближении, взаимодействие между такими объектами можно описать следующей схемой,


Управляющий объект

Управляемый объект


Управляющее

воздействие


В приведенных примерах управляющее воздействие производится в разной форме, человек нажимает клавишу или поворачивает ручку управления телевизором, хозяин голосом дает команду собаке.

С кибернетической точки зрения все варианты управляющих воздействий следует рассматривать как управляющую информацию, передаваемую в форме команд.

В примере с телевизором, через технические средства управления передаются кодами следующего типа, «включить- выключить» «увеличить или уменьшить громкость». В данном выше определении сказано, что управление есть целенаправленный процесс, то есть команды отдаются не случайным образом, а с вполне определенной целью. В простейшем случае цель может быть достигнута после выполнения одной команды. Для достижения более сложной цели бывает необходимо выполнить последовательность (серию) команд. Последовательность команд по управлению объектом, приводящая к заранее поставленной цели, называется алгоритмом управления.

В таком случае, объект управления можно назвать исполнителем управляющего алгоритма. Значит, в приведенных выше примерах телевизор, собака, автомобиль являются исполнителями управляющих алгоритмов, направленных на вполне конкретные цели (найти интересующую передачу, выполнить определенное задание хозяина, благополучно проехать перекресток).

Если внимательно обдумывать рассматриваемые примеры, то приходишь к выводу, что строго в соответствии со схемой работает только система светофор- автомобили. Светофор не глядя управляет движением машин, не обращая внимания на обстановку на перекрестке. Совсем иначе протекает процесс управления телевизором или собакой. Прежде, чем отдать очередную команду, человек смотрит на состояние объекта управления, на результат выполнения предыдущей команды. Если он не нашел нужную передачу на данном канале, то переключит телевизор на следующий канал, если собака не выполнила команду «лежать», хозяин повторит эту команду. Из этих примеров можно сделать вывод, что управляющий не только отдает команды, но и принимает информацию от объекта управления о его состоянии. Этот процесс называется обратной связью.

Обратная связь- это процесс передачи информации о состоянии объекта управления к управляющему.

У Управляющий объект

Управляемый объект

Правлению с обратной связью соответствует следующая схема.

управляющее


воздействие


обратная связь


В варианте управления без обратной связи алгоритм может представлять собой только однозначную (линейную) последовательность команд.

Вот пример работы светофора,

КРАСНЫЙ-ЖЕЛТЫЙ-ЗЕЛЕНЫЙ-ЖЕЛТЫЙ-КРАСНЫЙ-ЖЕЛТЫЙ-ЗЕЛЕНЫЙ и т.д.

Такой алгоритм называется линейный или последовательным.

При наличии обратной связи алгоритм может быть более гибким, допускающим ветвления и повторения.

При этом сам управляющий должен быть достаточно интеллектуальным для того, чтобы, получив информацию по обратной связи, проанализировать ее и принять решение о следующей команде. Во всех случаях, где управляющим является человек, это условие выполнено.

Если вместо светофора работает мент, то управление движением станет более рациональным. Регулировщик следит за скоплением машин на перекрестке, и дает «зеленую улицу» в том направлении, в котором это нужнее. Нередко из-за «безмозглого» управления светофора на дорогах возникают « пробки». И ту непременно приходит на помощь регулировщик.

Таким образом, при наличии обратной связи и «интеллектуального» управляющего, алгоритмы управления могут иметь сложную структуру, содержащую альтернативные команды (ветвления) и повторяющиеся команды (циклы).

Системы, в которых роль управляющего поручается компьютеру, называется автоматическими системами с программным управлением.

\для функционирования такой системы, во-первых, между ЭВМ и объектом управления должна быть обеспечена прямая и обратная связь, во-вторых, в память компьютера должна быть заложена программа управления (алгоритм, записанный на языке программирования). Поэтому такой способ управления называют программным управлением.


Основные логические операции. Логическое умножение, сложение отрицание

Логические операции ИЛИ (логическое сложение) (дизъюнкция).

Мама диктует вам сложное условие, если ты уберешь в комнате или вымоешь всю посуду после ужина, то пойдешь на дискотеку. Условие можно записать так, «убрал в комнате?» или «вымыл посуду?»

На каждый из двух простых вопросов можно ответить «да» и «нет». Решение принимается в зависимости от ответа на эти вопросы.

Убрал в комнате? Вымыл посуду? Пойдешь на дискотеку?



Нет (ложь). Да (истина). Да (истина).


Да (истина). Нет (ложь). Да (истина).


Редставим с помощью таблицы все возможные варианты принятия решения.

Такую таблицу принято называть таблицей истинности. Из нее можно сделать вывод, что операция ИЛИ дает вам три различных варианта принятия положительного решения по вопросу, или убрать, или вымыть посуду, или сделать то и другое.

Принятие решения по этому сложному условию имеет следующий вид, если сложное условие истинно, то можно идти на дискотеку (в противном случае, очевидно, придется сидеть дома).

Логическая операция И (логическое умножение) (конъюнкция).

Вы пришли устраиваться на работу по объявлению, в котором оговаривается, что от вас требуется знание компьютера и стаж работы по специальности. Условие может быть сформулировано так, «имеете стаж работы?» И «знаете компьютер?». На каждый из двух простых вопросов можно ответить и «да» и «нет».

Имеете стаж работы? Знаете компьютер? Будете приняты на работу


Нет (ложь). Нет (ложь). Нет (ложь).


Нет (ложь). Да (истина). Нет (ложь).


Да (истина). Нет (ложь). Нет (ложь).


Да (истина). Да (истина). Да (истина).

Озможные сочетания ответов для принятия решения,

Из таблицы можно сделать вывод, что операция И дает вам всего один вариант принятия положительного решения, наличие стажа работы и знание компьютера одновременно.

Принятие решения по этому сложному условию имеет все тот же стандартный вид, если условие истинно, то вы принимаетесь на работу (в противном случае, очевидно, не принимаетесь).

Следует заметить, что анализ сложного условия требует точности и понимания. Если уверенности в правильности вводов нет, то сложное условие всегда можно заменить последовательным анализом простых условий. Проиллюстрируем эту мысль на несложном «огородном» примере. Чтобы предупредить развитие болезней, помидоры и огурцы опрыскиваются бордосской жидкостью- смесь растворов медного купороса и извести. Главное условие при использование такой жидкости--раствор не должен быть кислотным. Проверяется это лакмусовой бумажкой. Тут возможны три варианта реакции, бумажка покраснела (кислотная реакция), посинела (щелочная) или не изменила цвет (нейтральная).

Возможны следующие варианты логической модели принятия решения.

Алгоритм поведения (вариант 1)

Смешать растворы.

Опустить в жидкость лакмусовую бумажку.

Если бумажка посинела или не изменила цвет,

То можно опрыскивать,

Иначе добавить извести

И повторить действия, начиная с пункта 2.

Конец алгоритма

Эта модель содержит условие, которое истинно во всех случаях, кроме одновременной ложности двух исходных выражений, бумажка не посинела и не сохранила цвет.

Логическое отрицание (инверсия)

Логическое отрицание (инверсия) дает истинное высказывание ложным и, наоборот, ложное-истинным.

Присоединение частицы «не» к высказыванию называется операцией логического отрицания.

Пусть А= «два умножить на два равно четырем» истинное высказывание, тогда высказывание F,образованное с помощью операции логического отрицания, «два умножить на два не равно четырем»-ложно.

Инверсию над логическим высказыванием А принято обозначить Ā. Образуем высказывание F, являющейся логическим отрицанием А.

Истинности такого высказывания задается таблицей истинности функции логического отрицания.




Истинности высказывания, образованного с помощью операции логического отрицания, можно легко определить с помощью таблицы истинности. Например, высказывание «два умножить на два не равно четырем» ложно (А=0), а полученное из него в результате логического отрицания высказывание «два умножить на два равно четырем» истинно (F=1).


Файлы (тип, имя, местоположение). Работа с файлами.

Файл- это однородная по своему назначению совокупность информации, хранящаяся на диске и имеющая имя.

Правила образование имен файлов и объединения файлов в файловые системы зависят от конкретной операционной системы. Изложим эти правила на примере операционной системы MS –DOS 6.0.

Имя файла состоит из двух частей: собственно имени и расширения имени (т. е. Типа файла). Собственно имя файла состойт из не более чем восьми символов. Нельзя употреблять знаки арифметических операций, пробела, отношений, пунктуации. В качестве имен файлов запрещены имена, являющиеся в MS-DOS именами устройств, например con, ipt1, ipt2. Расширение имени может состоять не более чем из трех символов, в том числе может отсутствовать. Если расширения есть, то от основного имени оно отделяется точкой, например ris. Bmp, mart. Txt, doc.doc. По имени файла можно судить о его назначении, так как для расширений установилось некоторое соглашение, фиксирующее для ОС тип обработки файлов. Расширение com или exe имеют файлы программ, преднозначеных для исполнения по вызову пользователя; doc- файлы с документами, подготовленные в текстовом редакторе Microsoft World; bak–резервные копии; bas-файлы с текстами программ на языке Бейсик.

Список имен файлов, хранящихся на данном диске, находятся в каталоге (директорий) вместе со сведеньями о его типе, размере, времени создания. Емкость гибких магнитных дисков, а тем более жестких и компакт- дисков такова, что на одном диске может размещаться для хранения внушительное количество файлов. Поэтому работа с каталогом, имеющим линейную структуру, крайне неудобна при большом количестве файлов.

MS-DOS позволяет организовать имена файлов в несколько каталогов, помещая в один каталог имена файлов, объединенным каким- либо признаком. Имена каталогов записываются с использованием уже названных ограничений. Как правило, расширение имени для каталогов не используется. Каталог может содержать любое разумное число имен файлов; он также может содержать другие каталоги, называемые в этой ситуации подкаталогами и т.д. Так образуются иерархическая структура, «дерево» каталогов, «корнем» в котором является главный (корневой) каталог, «ветвями» – подкаталоги, «листьями» – имена файлов.

Два файла или два подкаталога, находящиеся в двух разных каталогах, могут иметь одинаковые имена. Поэтому для однозначной индефикации файла (каталога) на диске следует указать путь (маршрут) доступа к нему. Путь доступа состоит из имени диска и списка имен каталогов. Первый каталог в списке является подкаталогом корневого каталога, каждый последующий- подкаталогом предыдущего, последний каталог в этом списке содержит искомый файл. Элементы списка разделяются обратной косой чертой (\).

Например:

C:\qbasic\basic1\qbasic.exe

C:\qbasic\basic2\qbasic.exe

Составное (полное) имя файла состоит из пути доступа к файлу и его имени. Оно однозначно определяет участок на диске с таким именем. На диске выделяется определенная область, в которой размещается специальная таблица, содержащая последовательности номеров блоков (секторов) для каждого файла. Таблица эта постоянно обновляется, а полностью стирается вместе с корневым каталогом при форматировании диска.

Часто файлы разделяются на две категории- текстовые и двоичные. Текстовые файлы предназначены для чтения человеком. Они состоят из строк символов. В текстовых файлах хранятся тексты документов, тексты программ на языках программирования и т. д.

Файлы не являются текстовыми, называются двоичными. Они имеют вид, «понятный» только компьютеру, они часто структурируются таким образом, чтобы их было удобно «читать» некоторой конкретной программе.

При эксплуатации компьютера по самым разным причинам возможны порча или потеря информации на магнитных дисках. Для того чтобы уменьшить потери в таких ситуациях, следует иметь архивные копии используемых файлов и систематически обновлять копии изменяемых файлов. Для создания архивов употребляются программы – архиваторы (упаковщики), позволяющие за счет применения специальных методов сжатия информации создавать копии файлов меньшего размера объединять копии нескольких файлов в один архивный файл, который удобно хранить на дискете. Примеры программ архиваторов –pkzip, arj и др.

Кроме архивирования с файлами можно производить следующие действия (в скобках указаны соответствующие команды MS-DOS):

Создание (при помощи текстового редактора);

Удаление (del);

Переименование (ren);

Копирование (copy) из одного каталога в другой;

Нахождение на диске по имени файла и содержащейся в нем строке символов (программа filefind из пакета Norton Utilites);

В некоторых случаях восстановление, если файл случайно удален (программа unarase из пакета Norton Utilites).

Эти действия можно выполнить с отдельными файлами и с группой файлов.


Логические выражения и их преобразования. Таблицы истинности.

Логические выражения. Каждое составное высказывание можно выразить в виде формул (логического выражения), в которую войдут логические переменные, обозначающие высказывания, и знаки логических операций, обозначающие логические функции.

Для записи составных высказываний в виде логических выражений на формальном языке (языке алгебры логики0 в составном высказывании нужно выделить простые высказывания и логические связи между ними.

Запишем в форме логического выражения составное высказывание «2*2=5 или 2*2=4 или 2*24»проанализируем составное высказывание. Оно состоит из двух простых высказываний,

А= «2*2=5»- ложно (0)

В= «2*2-4» -истинно (1).

Тогда составное высказывание можно записать в следующей форме,

«А или В и Ā или В».

теперь необходимо записать высказывание в форме логического выражения с учетом последовательности выполнения логических операций. При выполнении логических операций определен следующий порядок их выполнения, инверсия, конъюнкция, дизъюнкция. Для изменения указанного порядка могут использоваться сковки.

Истинности или ложности составных высказываний можно определить чисто формально, руководствуясь законами алгебры высказываний, не обращаясь к смысловому содержанию высказываний.

П
одставим в логическое выражение значения логических переменных и, используя таблицы истинности базовых логических операций, получим значение логической функции.

Таблицы истинности. Для каждого составного высказывания (логического выражения) можно построить таблицу истинности, которая определяет его истинность или ложность при всех возможных комбинациях исходных значений простых высказываний (логических переменных).

При построении таблиц истинности целесообразно руководствоваться определенной последовательностью действий.

Во-первых, необходимо определить количество строк в таблице истинности, которое равно количеству возможных комбинаций значений логических переменных, входящих в логическое выражение. Если количество логических переменных n, то количество строк =2 n .

В нашем случае логическая функция F=(AB)&(ĀЇB) имеет две переменное и, следовательно, количество строк в таблице истинности должно быть равно 4.

Во-вторых, необходимо определить количество столбцов в таблице истинности, которое равно количеству логических переменных плюс количество логических операций равно пяти, т.е. количество столбцов таблицы истинности равно семи.

В-третьих, необходимо построить таблицу истинности с указанным количеством строк и столбцов, обозначить столбцы и внести возможные наборы значений исходных логических переменных.


A B AB Ā ЇB







В-четвертых, необходимо заполнить таблицу истинности по столбцам, выполняя базовые логические операции в необходимой последовательности и в соответствии с их таблицами истинности. Теперь мы можем определить значение логической функции для любого набора значений логических переменных.

Равносильные логические ворожения. Логические выражения, у которых таблицы истинности совпадают, называются равносильными. Для обозначения равносильных логических выражений используется знак «=».

Д
окажем, что логические ворожения равносильны.

П
остроим сначала таблицу истинности для логического выражения.







Таблица истинности




Таблицы истинности совпадают, следовательно, логические выражения равносильны.

Логические функции.

Любое составное высказывание можно рассматривать как логическую функцию F(Х 1 ,Х 2 …Х n), аргументами которой являются логические переменные X 1 ,X 2 ….X n (простые высказывания). Сама функция и аргументы могут принимать только два различных значения «истина» (1) и «ложь» (0).

Выше были рассмотрены функции двух аргументов, логическое умножение F=(A,B)=A&B, логическое сложение F=(A,B)=AB, а также логическое отрицание F(A)=Ā, в котором значение второго аргумента можно считать равным нулю.

Каждая логическая функция двух аргументов четыре возможных набора значений аргументов. По формуле можем определить какое количество различных логических функций двух аргументов, может существовать,

Т
аким образом, существует 16 различных логических функций двух аргументов, каждая из которых задается собственной таблицей истинности.

В обыденной и научной речи кроме базовых логических связок «и», «или», «не», используется и некоторые другие, «если…то», «тогда…и только тогда, когда…» и др. некоторые из них имеют свое название и свой символ и им соответствует определенные логические функции.

Логическое следование (импликация). Логическое следование (импликация) образуется соединением двух высказываний в одно с помощью оборота речи «если…, то…».

Составное высказывание, образованное с помощью операции логического следования (импликации), ложна тогда и только тогда, когда из истинной предпосылки (первого высказывания) следует ложный вывод (второе высказывание).

Логическая операция импликация «если А то В», обозначается А→В и выражается с помощью логической функции F 14 ,которая задается соответствующей таблицей истинности.

А В F 14 =A→B



Например, высказывание «если число делится на 10, то оно делится на 5» истинно, т.к. истинны и первое высказывание (предпосылка), и второе высказывание (вывод).

Высказывание №если число делится на 10, то оно делится на 3» ложно, т.к. из истинной предпосылки делится ложный вывод.

Однако операция логического следования несколько отличается от обычного понимания слова «следует». Если первое высказывание (предпосылка)ложно, то вне зависимости от истинности или ложности второго высказывания (вывода) составное высказывание истинно. Это можно понимать таким образом, что из неверной предпосылки может следовать что угодно.

В алгебре высказываний все логические функции могут быть сведены путем логических преобразований к трем базовым, логическому умножению, логическому сложению и логическому отрицанию. Докажем методы сравнения таблиц истинности, что операция импликация А→В равносильна логическому выражению ĀB.





Таблицы истинности совпадают, что и требовалось доказать.


Логическое равенство (эквивалентность). Логическое равенство (эквивалентность) образуется соединением двух высказываний в одно с помощью оборота речи «…тогда и только тогда, когда…».

Логическая операция эквивалентности «А эквивалентно В» обозначается АВ и выражается с помощью логической функции F 10 , которая задается соответствующей таблицей истинности.


Составное высказывание, образованное с помощью логическое операции эквивалентности истинно тогда и только тогда, когда оба высказывания одновременно либо ложны, либо истинны.

Рассмотрим, например, два высказывания А= «компьютер может производить вычисления» и В= «компьютер включен». Составное высказывание, полученное с помощью операции эквивалентности истинно, когда оба высказывания либо истинны, либо ложны.

«компьютер может производить вычисления тогда и только тогда, когда компьютер включен».

«компьютер не может производить вычисления тогда и только тогда, когда компьютер не включен».

Составное высказывание, полученное с помощью операции эквивалентности ложно, когда одно высказывание истинно, а другое-ложно,

«Компьютер может производить вычисления тогда и только тогда, когда компьютер не включен».

«Компьютер не мажет производить вычисления тогда и только тогда, когда компьютер выключен»


Билет 10

Правовая охрана программ и данных. Защита информации

Изменения, происходящие в экономической жизни России - создание финансово-кредитной системы, предприятий различных форм собственности и т.п. - оказывают существенное влияние на вопросы защиты информации. Долгое время в нашей стране существовала только одна собственность- государственная, поэтому информация и секреты были тоже только государственные, которые охранялись мощными спецслужбами.

Проблемы информационной безопасности постоянно усугубляется процессами проникновения практически во все сферы деятельности общества технических средств обработки и передачи данных и прежде всего вычислительных систем. Это дает основание поставить проблему компьютерного права, одним из основных аспектов которой являются так называемые компьютерные посягательства. Об актуальности проблемы свидетельствует обширный перечень возможных способов компьютерных преступлений.

Объектами посягательств могут быть сами технические средства (компьютеры и периферия) как материальные объекты, программное обеспечение и базы данных, для которых технические средства являются окружением.

В этом смысле компьютер может выступать и как предмет посягательств, и как инструмент. Если разделять два последних понятия, то термин компьютерное преступление как юридическая категория не имеет особого смысла. Если компьютер - только объект посягательства, то квалификация правонарушения может быть произведена по существующим нормам права. Если же - только инструмент, то достаточен только такой признак, как “применение технических средств”. Возможно объединение указанных понятий, когда компьютер одновременно и инструмент и предмет. В частности, к этой ситуации относится факт хищения машинной информации. Если хищение информации связано с потерей материальных и финансовых ценностей, то этот факт можно квалифицировать как преступление. Также если с данным фактом связываются нарушения интересов национальной безопасности, авторства, то уголовная ответственность прямо предусмотрена в соответствии с законами РФ.

Каждый сбой работы компьютерной сети это не только “моральный” ущерб для работников предприятия и сетевых администраторов. По мере развития технологий платежей электронных, “безбумажного” документооборота и других, серьезный сбой локальных сетей может просто парализовать работу целых корпораций и банков, что приводит к ощутимым материальным потерям. Не случайно что защита данных в компьютерных сетях становится одной из самых острых проблем в

современной информатике. На сегодняшний день сформулировано три базовых принципа информационной безопасности, которая должна обеспечивать:

целостность данных - защиту от сбоев, ведущих к потере информации, а также неавторизованного создания или уничтожения данных.

конфиденциальность информации и, одновременно, ее

Следует также отметить, что отдельные сферы деятельности (банковские и финансовые институты, информационные сети, системы государственного управления, оборонные и специальные структуры) требуют специальных мер безопасности данных и предъявляют повышенные требования к надежности функционирования информационных систем, в соответствии с характером и важностью решаемых ими задач.

Компьютерная преступност

Ни в одном из уголовных кодексов союзных республик не удастся найти главу под названием “Компьютерные преступления”. Таким образом компьютерных преступлений, как преступлений специфических в юридическом смысле не существует.

Попытаемся кратко обрисовать явление, которое как социологическая категория получила название “компьютерная преступность”. Компьютерные преступления условно можно подразделить на две большие категории - преступления, связанные с вмешательством в работу компьютеров, и, преступления, использующие компьютеры как необходимые технические средства.

Перечислим основные виды преступлений, связанных с вмешательством в работу компьютеров.

1. Несанкционированный доступ к информации, хранящейся в компьютере. Несанкционированный доступ осуществляется, как правило, с использованием чужого имени, изменением физических адресов технических устройств, использованием информации оставшейся после решения задач, модификацией программного и информационного обеспечения, хищением носителя информации, установкой аппаратуры записи, подключаемой к каналам передачи данных.

Хакеры “электронные корсары”, “компьютерные пираты” - так называют людей, осуществляющих несанкционированный доступ в чужие информационные сети для забавы. Набирая на удачу один номер за другим, они терпеливо дожидаются, пока на другом конце провода не отзовется чужой компьютер. После этого телефон подключается к приемнику сигналов в собственной ЭВМ, и связь установлена. Если

теперь угадать код (а слова, которые служат паролем часто банальны), то можно внедриться в чужую компьютерную систему.

Несанкционированный доступ к файлам законного пользователя осуществляется также нахождением слабых мест в защите системы. Однажды обнаружив их, нарушитель может не спеша исследовать содержащуюся в системе информацию, копировать ее, возвращаться к ней много раз, как покупатель рассматривает товары на витрине.

Программисты иногда допускают ошибки в программах, которые не удается обнаружить в процессе отладки. Авторы больших сложных программ могут не заметить некоторых слабостей логики. Уязвимые места иногда обнаруживаются и в электронных цепях. Все эти небрежности, ошибки приводят к появлению “брешей”.

Обычно они все-таки выявляются при проверке, редактировании, отладке программы, но абсолютно избавится от них невозможно.

Бывает, что некто проникает в компьютерную систему, выдавая себя за законного пользователя. Системы, которые не обладают средствами аутентичной идентификации (например по физиологическим характеристикам: по отпечаткам пальцев, по рисунку сетчатки глаза, голосу и т. п.), оказываются без защиты против этого приема. Самый простейший путь его осуществления:

Получить коды и другие идентифицирующие шифры законных пользователей.

Это может делаться:

Приобретением (обычно подкупом персонала) списка пользователей совсей необходимой информацией;

Обнаружением такого документа в организациях, где не налажен

достаточный контроль за их хранением;

Подслушиванием через телефонные линии.

Иногда случается, как например, с ошибочными телефонными звонками, что пользователь с удаленного терминала подключается к чьей-то системе, будучи абсолютно уверенным, что он работает с той системой, с какой и намеревался. Владелец системы, к которой произошло фактическое подключение, формируя правдоподобные отклики, может поддерживать это заблуждение в течение определенного времени и таким образом получить некоторую информацию, в частности коды.

В любом компьютерном центре имеется особая программа, применяемая как системный инструмент в случае возникновения сбоев или других отклонений в работе ЭВМ, своеобразный аналог приспособлений, помещаемых в транспорте под надписью “разбить стекло в случае аварии”. Такая программа - мощный и опасный инструмент в руках злоумышленника.

Несанкционированный доступ может осуществляться в результате системной поломки. Например, если некоторые файлы пользователя остаются открытыми, он может получить доступ к не принадлежащим ему частям банка данных. Все происходит так словно клиент банка, войдя в выделенную ему в хранилище комнату, замечает, что у хранилища нет одной стены. В таком случае он может проникнуть в чужие сейфы и похитить все, что в них хранится.

2. Ввод в программное обеспечение “логических бомб”, которые срабатывают при выполнении определенных условий и частично или полностью выводят из строя компьютерную систему.

“Временная бомба” - разновидность “логической бомбы”, которая срабатывает по достижении определенного момента времени.

Способ “троянский конь” состоит в тайном введении в чужую программу таких команд, позволяют осуществлять новые, не планировавшиеся владельцем программы функции, но одновременно сохранять и прежнюю работоспособность.

С помощью “троянского коня” преступники, например, отчисляют на свой счет определенную сумму с каждой операции.

Компьютерные программные тексты обычно чрезвычайно сложны. Они состоят из сотен, тысяч, а иногда и миллионов команд. Поэтому “троянский конь” из нескольких десятков команд вряд ли может быть обнаружен, если, конечно, нет подозрений относительно этого. Но и в последнем случае экспертам-программистам потребуется много дней и недель, чтобы найти его.

Есть еще одна разновидность “троянского коня”. Ее особенность состоит в том, что в безобидно выглядящей кусок программы вставляются не команды, собственно, выполняющие “грязную” работу, а команды, формирующие эти команды и после выполнения уничтожающие их. В этом случае программисту, пытающемуся найти “троянского коня”, необходимо искать не его самого, а команды его формирующие. Развивая эту идею, можно представить себе команды, которые создают команды и т.д. (сколь угодно большое число раз), создающие “троянского коня”.

В США получила распространение форма компьютерного вандализма, при которой “троянский конь” разрушает через какой-то промежуток времени все программы, хранящиеся в памяти машины. Во многих поступивших в продажу компьютерах оказалась “временная бомба”, которая “взрывается” в самый неожиданный момент, разрушая всю библиотеку данных. Не следует думать, что “логические бомбы” - это экзотика, несвойственная нашему обществу.


При использовании материалов этого сайта - и размещение баннера -ОБЯЗАТЕЛЬНО!!!

Данные экзаменационные билеты предназначены для общеобразовательных школ (классов), оснащенных вычислительной техникой, в которых после прохождения основного (базового) курса информатики в 7-9 классах продолжается изучение курса в старших классах (10-11 классы).

Каждый билет содержит три вопроса, два из которых носят теоретический характер, один - практический.

Если школа не располагает необходимыми условиями для выполнения практических заданий по информационным технологиям (устаревшие компьютеры, отсутствие доступа в Интернет), такие задания могут быть заменены на другие задания, например, по алгоритмизации и программированию или задачи.

Билет № 1

1. Информация и информационные процессы в природе, обществе, технике. Информационная деятельность человека. Привести примеры.

2. Объектно-ориентированное программирование. Объекты: свойства и методы. Классы объектов.

3. Практическое задание на проведение расчетов с помощью электронной таблицы.

Билет № 2

1. Информационные процессы в управлении. Обратная связь. Показать на примере.

2. Строковые величины. Строковые функции и выражения.

3. Задача на определение результата выполнения алгоритма по его блок-схеме или записи на алгоритмическом языке.

Билет № 3

1. Язык и информация. Естественные и формальные языки.

2. Алгоритмическое программирование. Основные способы организации действий в алгоритмах.

3. Практическое задание на построение графика функции с помощью электронной таблицы.

Билет № 4

1. Двоичная система счисления. Запись чисел в двоичной системе счисления.

2. Компьютер. Его состав: магистрально-модульное построение компьютера.

3. Задание на разработку фрагмента программы тестирования знаний (формул, исторических дат, географических названий и т.п.).

Билет № 5

1. Кодирование информации. Способы кодирования. Привести примеры.

2. Основные характеристики компьютера (разрядность, объем оперативной и внешней памяти, тактовая частота, быстродействие и др.).

3. Практическое задание на создание, преобразование, сохранение и печать рисунка с помощью графического редактора.

Билет № 6

1. Качественные и количественные характеристики информации. Свойства информации (новизна, актуальность, достоверность и др.). Единицы измерения количества информации.

2. Внешняя память компьютера. Различные виды носителей информации, их характеристики (информационная емкость, быстродействие и т.д.).

3. Практическое задание на работу с файлами (копирование, переименование, удаление).

Билет № 7

1. Функциональная схема компьютера. Основные устройства компьютера, их назначение и взаимосвязь.

2. Способы записи алгоритмов (описательный, графический, на алгоритмическом языке, на языке программирования).

3. Практическое задание на поиск файлов.

Билет № 8

1. Программное управление работой компьютера. Программное обеспечение компьютера. Привести примеры.

2. Основные типы и способы организации данных (переменные, массивы, списки).

3. Практическое задание на работу с диском (форматирование, создание системной дискеты).

Билет № 9

1. Папки и файлы (тип файла, имя файла). Файловая система. Основные операции с файлами в операционной системе.

2. Логическое сложение. Таблица истинности.

3. Практическое задание на тестирование и «лечение» гибкого диска от вирусов.

Билет № 10

1. Правовая охрана программ и данных. Защита информации.

2. Основные логические устройства компьютера (сумматор, регистр).

3. Практическое задание на создание, редактирование, сохранение и распечатку текста с помощью текстового редактора.

Билет № 11

1. Этапы решения задачи с помощью компьютера (построение модели - формализация модели - построение компьютерной модели - проведение компьютерного эксперимента - интерпретация результата).

2. Моделирование как метод научного познания. Модели материальные и информационные.

3. Практическое задание на поиск информации в базе данных по заданным параметрам.

1. Формализация моделей. Привести пример формализации (например, преобразование описательной модели в математическую).

2. Мультимедиа технология.

3. Практическое задание на сортировку информации в базе данных по заданным параметрам.

Билет № 13

1. Описание состояния объекта и описание изменения состояния объекта с помощью статических и динамических информационных моделей. Привести примеры из различных предметных областей.

2. Массивы и алгоритмы их обработки.

3. Задача на перевод числа, записанного в десятичной системе счисления, в двоичную систему, восьмеричную и шестнадцатеричную системы.

Билет № 14

1. Алгоритм. Свойства алгоритма. Возможность автоматизации деятельности человека. Показать на примере.

2. Операционная система компьютера (назначение, состав, загрузка). Графический интерфейс.

3. Задание на разработку программы по подсчету количества появлений конкретного символа в заданном фрагменте текста.

Билет № 15

1. Алгоритмическая структура «ветвление». Команды ветвления. Привести пример.

2. Представление и кодирование информации с помощью знаковых систем. Алфавитный подход к определению количества информации.

3. Задача на определение истинности составного высказывания.

Билет № 16

1. Алгоритмическая структура «цикл». Команды повторения. Привести пример.

2. Выполнение арифметических операции в двоичной системе счисления.

3. Задача на определение количества информации с последующим преобразованием единиц измерения.

Билет № 17

1. Пример разработки алгоритма методом последовательной детализации. Вспомогательные алгоритмы. Привести пример.

2. Информационное моделирование. Основные типы информационных моделей (табличные, иерархические, сетевые).

3. Задача на сложение и вычитание двоичных чисел.

Билет № 18

1. Основы языка программирования (алфавит, операторы, типы данных и т.д.).

2. Основы языка разметки гипертекста (HTML).

3. Практическое задание на организацию запроса при поиске информации в Интернете.

Билет № 19

1. Текстовый редактор. Назначение и основные функции.

2. Двоичное кодирование текстовой информации. Различные кодировки кириллицы.

3. Практическое задание на инсталляцию программного продукта.

Билет № 20

1. Графический редактор. Назначение и основные функции.

2. Логическое умножение. Таблица истинности.

3. Привести пример адреса электронной почты и объяснить его формат.

Билет № 21

1. Электронные таблицы. Назначение и основные функции.

2. Адресация в Интернете: доменная система имен и IP-адреса.

3. Задание на разработку программы поиска максимального элемента в массиве.

Билет № 22

1. Базы данных. Назначение и основные функции.

2. Компьютерные вирусы: способы распространения, защита от вирусов.

3. Практическое задание на разработку Web-страницы.

Билет № 23

1. Информационные ресурсы сети Интернет: электронная почта, телеконференции, файловые архивы. Всемирная паутина.

2. Информация. Вероятностный подход к измерению количества информации.

3. Задача на построение блок-схемы алгоритма, записанного на естественном языке.

Билет № 24

1. Гипертекст. Технология WWW (World Wide Web - Всемирная паутина).

2. Визуальное объектно-ориентированное программирование. Графический интерфейс: форма и управляющие элементы.

3. Практическое задание на определение информационной емкости различных носителей информации.

Билет № 25

1. Основные этапы развития вычислительной техники. Информатизация общества.

2. Локальные и глобальные компьютерные сети. Назначение сетей.

3. Задание на разработку программы с использованием двумерного массива и вложенных циклов.

Экзаменационные билеты по информатике в 10-11 классе.

Понравилось? Отблагодарите, пожалуйста, нас! Для Вас это бесплатно, а нам - большая помощь! Добавьте наш сайт в свою социальную сеть:

Итак, как знают многие учителя информатики принимавшие экзамены по этому предмету в 2012 году, были использованы билеты за прошлые годы. За последние 5-6 лет, по большому счету, теоретические вопросы к экзаменам по информатике для 9 класса меняются только местами.

С практикой дело обстоит сложнее. Практические задания могут сильно отличаться друг от друга. Более того, теоретические вопросы, скорее всего будут готовить местные специалисты. Т.е. в разных регионах России теоретическая часть будет различаться, притом будет несколько вариантов заданий. Например, в нашем районе, в прошлом году, информатику сдавали в разные дни и практические задания были разные. Какие конкретно будут задания для 9 класса в этом году, можно будет узнать только на экзамене.

Тем не менее, можно ознакомиться с теоретическими заданиями 2009 года и понять, какие примерно будут задания в этом году. Естественно, надо попробовать эти задания выполнить, что называется "ручками", а не просто "прокрутить в голове".

Итак, предлагаю один из вариантов заданий 2009 года. Как я уже сказал выше, в разные дни будут разные практические задания, так что не ищите универсального варианта - его нет.

Билеты по информатике для 9 класса

Билет 1

1. Понятие информации. Виды информации. Роль информации и живой природе и в жизни людей. Язык как способ представления информации: естественные и формальные языки. Основные информационные процессы: храпение, передача и обработка информации.

2. Напишите программу на языке программирования (или составьте алгоритм). Дано натуральное число n. Определите, сколько раз цифра «7» встречается в записи данного числа.

Билет 2

1. Измерение информации: содержательный и алфавитный подходы. Единицы измерения инфор­мации.

2. Используя MS Word,выполните обработку текстового документа.

1) Оформите текст (Приложение 2) в соответствии со следующими требованиями: междустрочный интервал -1,25; красная стока – 1,4, выравнивание по ширине; шрифт – Times New Roman, обычный, 13 пт.

2) Замените все встречающиеся в тексте сочетания «4-5» на «четыре-пять»; «50» – на «пятьдесят».

Билет 3

1. Дискретное представление информации: двоичные числа; двоичное кодирование текста в памяти компьютера. Информационный объем текста.

2. Имеется фотография, введенная в компьютер через сканер (Приложение 3). Создайте портрет девочки, стоящей во втором ряду около мальчика-пионера без очков, вырезав ее портрет из коллективной фотографии; сделайте портрет овальной формы; произведите цветовую коррекцию фотографии.

Билет 4

1. Дискретное представление информации: кодирование цветного изображения в компьютере (растровый подход). Представление и обработка звука и видеоизображения. Понятие мультимедиа.

2. Выполните следующие действия с папками и файлами

1) Создать на рабочем столе папку WORK .

2) Создайте в папке WORK папку с именем RRIMER .

3) Скопируйте в созданную папку RRIMER папку 123, файлы 1.doc и 2. xls (Приложение 4. RAR- архив 4,7 Мб)

4) Переместите в папку WORK файлы 1.doc и 2. xls из папки RRIMER .

5) Переименуйте папку 123 в папку UROK-2.

6) Скопируйте в папку UROK-2 папку 123 (Приложение 4)

7) Удалить из папки WORK и вложенных в нее папок все файлы.

8) Выведите содержимое папки UROK-2 в полной форме (Таблица), отсортировав ее по размеру файлов (по убыванию), если это возможно.

9) Выведите содержимое папки 123 в полной форме (Таблица), отсортировав ее по времени создания объектов (по возрастанию), если это возможно.

Билет 5

1. Процесс передачи информации, источник и приемник информации, канал передачи информа­ции. Скорость передачи информации.

2. Создайте на основе готового шаблона презентацию по теме «Москва златоглавая», состоящую не менее чем из 5 слайдов (картинки для презентации в приложении 5. RAR- архив 1,6 Мб). Примените к объектам эффекты анимации. Настройте автоматическую демонстрацию слайдов.

Билет 6

1. Понятие алгоритма. Исполнитель алгоритма. Система команд исполнителя (на примере учебно­го исполнителя). Свойства алгоритма. Способы записи алгоритмов; блок-схемы.

2. Создайте базу данных о ваших друзьях.

1) Создайте структуру таблицы базы данных «Мой класс», содержащую следующие поля: фамилия, имя, отчество, посещаемые кружки, год рождения, мама, год рождения, папа, профессия.

2) Определите первичный ключ таблицы.

3) В режиме таблицы введите в базу данных 6 записей об одноклассниках (значения полей можно задавать произвольно).

4) Добавьте в структуру таблицы после поля «мама» поле «профессия».

5) Удалите из структуры поле «посещаемые кружки».

6) Заполните в таблице поле «год рождения» (произвольно).

7) Выведите на экран поля «Фамилия», «Имя», «Мама» тех одноклассников, у которых мама по профессии врач (использовать запрос), отсортируйте их в алфавитном порядке фамилий.

Билет 7

1. Основные алгоритмические структуры: следо­вание, ветвление, цикл; изображение на блок-схе­мах. Разбиение задачи на подзадачи. Вспомогатель­ные алгоритмы.

2. Используя электронные таблицы Excel, решите задачу:

Дан прямоугольный параллелепипед со сторонами a, b, c. Вычислите: а) длину диагонали, б) угол между диагональю и боковым ребром .

Билет 8

1. Величины: константы, переменные, типы величин, Присваивание, плод и вывод величин. Линейные алгоритмы работы с величинами.

2. Найдите в Интернете информацию об отечественных дизайнерах одежды (не менее 5), проживающих в настоящее время в России, рожденных в 70-е годы XX века. Оформите информацию (фамилия, имя, отчество, биографическая справка, работы, фотография и т.п.) в текстовом редакторе Word, сделав ссылки на сайты, содержащие информацию о них (не менее 3).

Билет 9

1. Логические величины, операции, выражения. Логические выражения в качестве условий в ветвящихся и циклических алгоритмах.

2. Используя возможности MS Word, отформатируйте предложенный текст (Приложение 9). Установите параметры страницы: поля по 2,3 см, ориентация – книжная. Вставьте автоматическую нумерацию страниц (внизу, внутри, номер на первой странице не ставить). В начале текста напишите план и организуйте «быстрые» переходы по тексту в соответствии с планом (использовать гиперссылки).

Билет 10

1. Представление о программировании: язык программирования (на примере одного из языков вы­сокого уровня); примеры несложных программ с линейной, ветвящейся и циклической структурой.

2. Скопируйте папку (Приложение 10) в папку EXAMEN , создайте многотомный архив, для копирования на другой компьютер с помощью дискет, проверьте архив на вирусы.

Билет 11

1. Основные компоненты компьютера, их функциональное назначение и принципы работы. Про­граммный принцип работы компьютера.

2. Напишите программу на языке программирования (или составьте алгоритм). Дано натуральное число n, целые числа a 1 , a 2 , … a n . Определите номер предпоследнего из членов последовательности a 1 , a 2 , … a n , кратных 3; если членов, удовлетворяющих данным условиям, нет, то ответом должно быть «нет».

Билет 12

1. Программное обеспечение компьютера, состав и структура. Назначение операционной системы. Командное взаимодействие пользователя с компьютером. Графический пользовательский интерфейс.

2. Создайте презентацию «Памятники Москвы» с использованием графических объектов (приложение 12 - RAR- архив 3,8 Мб), кнопок перехода, эффектов анимации, организуйте демонстрацию слайдов с использованием управляющих кнопок.

Билет 13

1. Понятие файла и файловой системы организации данных (папка, иерархическая структура, имя файла, тип файла, параметры файла). Основные операции с файлами и папками, выполняемые пользователем. Понятие об архивировании и защите от вирусов.

2. Найдите с помощью указанной экзаменаторами поисковой машиныинформацию о чемпионатах мира по шахматам, оформите результаты поиска по следующим рубрикам: информационные сообщения (о сроках, победителях и т.п.), подготовка к чемпионату, его проведение.

Билет 14

1. Информационные ресурсы общества. Основы информационной безопасности, этики и права.

2. В среде электронной таблицы Excel организуйте проверку существования треугольника (по длинам трех отрезков); если треугольник существует, то определите, будет ли он равнобедренным и прямоугольным.

Билет 15

1. Технологии работы с текстовыми документа­ми. Текстовые редакторы и процессоры: назначение и возможности. Основные структурные элементы текстового документа. Шрифты, стили, форматы. Основные приемы редактирования документа. Встраиваемые объекты. Понятие гипертекста.

2. Напишите программу на языке программирования (или составьте алгоритм). Дано натуральное число n. Вычислите сумму первых n слагаемых: .

Билет 16

1. Технологии работы с графической информацией. Растровая и векторная графика. Аппаратные средства ввода и вывода графических изображений. Прикладные программы работы с графикой. Графический редактор. Основные инструменты и режимы работы.

2. Решение задачи представьте на изучаемом языке программирования или с ис­пользованием стандартной программы «Калькулятор». Осуществите перевод из 2-ичной системы счисления в 16-ричную чисел от 12 10 до 22 10 . Результаты представляются в виде таблицы.

Билет 17

1. Табличные базы данных (БД): основные поня­тия (поле, запись, первичный ключ записи); типы данных. Системы управления базами данных и прин­ципы работы с ними. Поиск, удаление и сортировка данных в БД. Условия поиска (логические выраже­ния); порядок и ключи сортировки.

2. Напишите программу на языке программирования (или составьте алгоритм). Треугольник задан длинами сторон (считая, что треугольник существует). Найдите длину описанной около треугольника окружности.

Билет 18

1. Технология обработки информации в элект­ронных таблицах (ЭТ). Структура электронной таб­лицы. Типы данных: числа, формулы, текст. Правила записи формул. Основные встроенные функции. Абсолютные и относительные ссылки. Графическое представление данных.

2. Напишите программу на языке программирования (или составьте алгоритм). В предложенной последовательности символов, содержащей пробелы, посчитайте количество букв «у» в предпоследнем слове данной последовательности.

Билет 19

1. Основные принципы организации и функцио­нирования компьютерных сетей. Интернет. Информационные ресурсы и сервисы компьютерных сетей: Всемирная паутина, файловые архивы, интерактивное общение. Назначение и возможности электронной почты. Поиск информации в Интернете.

2. Дана чернобелая фотография (приложение 19). Устраните крупные дефекты в изображении и выполните тоновую коррекцию.

Билет 20

1. Понятие модели, Информационная модель. Виды информационных моделей (на примерах). Реализация информационных моделей на компьютере. Пример применения электронной таблицы в качестве инструмента математического моделирования.

2. Напишите программу на языке программирования (или составьте алгоритм). Даны действительные числа a 1 , a 2 , … a n (все числа различны). Замените в этой последовательности наименьший элемент 0, а все нулевые элементынаибольшим членом последовательности.

1. Информационные процессы и управление. Обратная связь

Жизнедеятельность любого организма или нормальное функционирование технического устройства связаны с процессами управления. Процессы управления включают в себя получение, хранение, преобразование и передачу информации. В любом процессе управления всегда происходит взаимодействие двух объектов - управляющего и управляемого, которые соединены каналами прямой и обратной связи. По каналу прямой связи передаются управляющие сигналы, а по каналу обратной связи - информация о состоянии управляемого объекта. Модели, описывающие информационные процессы управления в сложных системах, называются информационными моделями процессов управления. В компьютере информация хранится во внешней памяти (на гибких или жестких магнитных дисках). В процессе записи информации дисковод обеспечивает запись информации на дискету, т. е. объект Дисковод (управляющий объект) изменяет состояние другого объекта Дискеты (управляемого объекта).

Сначала рассмотрим процесс записи информации на гибкую дискету. Чтобы информация могла быть записана, необходимо установить магнитную головку дисковода над определенной концентрической дорожкой дискеты. При записи информации на гибкие дискеты не требуется особой точности установки (имеется всего 80 дорожек) и можно не учитывать возможные механические деформации носителя. Управляющий объект (дисковод) просто перемещает магнитную головку на определенное расстояние вдоль радиуса управляемого объекта (дискеты).

Такой процесс не учитывает состояние управляемого объекта и обеспечивает управление по прямому каналу (от управляющего объекта к управляемому). Подобные системы управления называются разомкнутыми. Информационную модель разомкнутой системы управления можно наглядно представить с помощью схемы

Управл.объект а Управляемый объект

При записи информации на жесткие диски требуется особая точность установки (на рабочей поверхности носителя имеются тысячи дорожек) и необходимо учитывать механические деформации носителя (например, в результате изменения температуры).

В этом случае управляющий объект (система управления магнитными головками винчестера) получает информацию о реальном положении магнитной головки по каналу обратной связи и производит необходимые перемещения по прямому каналу управления.Такие системы управления называются замкнутыми. Информационная модель замкнутой системы управления наглядно представлена на схеме

Управляющий а Управляемый

Объект Я объект

2. Строковые переменные. Строковые выражения и функции

Строковые переменные. Строковые (символьные) переменные предназначены для хранения и обработки в программах последовательностей символов. Строковые переменные задаются именами, значения (последовательности символов). Для хранения строковых переменных требуется одна ячейка на каждый символ. Имя строковой переменной может состоять из различных символов (латинские и русские буквы, цифры и т. д.), но должно обязательно начинаться с буквы и не включать знак У.Ф (точка) (например, А или Строка). Рекомендуется для ясности текстов программ включать в имена переменных особую приставку, которая обозначает тип переменных - для строковых переменных приставку str (например, strA и strCTpoKa). Простейший способ задания типа переменной (ее объявления) состоит в приписывании к имени переменной определенного суффикса. Для строковой переменной это суффикс $ (например, А$,Строка$). Чтобы объявить в программе на языке Visual Basic строковую переменную, можно воспользоваться оператором определения переменной. Например: Dim strA,strCTpoKa As String

Строковые выражения. В состав строковых выражений могут входить кроме строковых переменных также и строки. Строками являются любые последовательности символов, заключенные в кавычки. Например: "информатика", "2000", "2*2"

Над переменными и строками может производиться операция конкатенации, которая состоит в объединении строки или значения строковых переменных в единую строку. Операция конкатенации обозначается знаком У+Ф, который не следует путать со знаком сложения чисел в арифметических выражениях. Пусть, например, строковое выражение будет включать в себя строку "ин", строковую переменную strA, значением которой является строка "форма", и строку "тика": "ин" + strA + "тика"

Тогда значением этого строкового выражения будет: "информатика"
Значение функции Mid - это подстрока, которая начинается от позиции символа, заданной числовым аргументом Позиция% и длиной, равной значению числового аргумента Длина %. Если аргументом функции Mid является строка "информатика", то значение строковой переменной зЬгПодстрока = Mid ("информатика", 3, 5) - строка "форма".

1. Язык и информация. Естественные и формальные языки

Для обмена информацией с другими людьми человек использует естественные языки (русский, английский, китайский и др.). Основу языка составляет алфавит, или набор символов (знаков), которые человек различает по их начертанию. В основе русского языка лежит кириллица, содержащая 33 знака, в английском языке применяется латиница (26 знаков), в китайском языке - алфавит из десятков тысяч знаков (иероглифов). Последовательности символов алфавита образуют в соответствии с правилами грамматики основные объекты языка - слова. Правила, согласно которым строятся предложения из слов данного языка, называются синтаксисом. Необходимо отметить, что в естественных языках грамматика и синтаксис языка формулируются с помощью большого количества правил, из которых существуют исключения, поскольку такие правила складывались исторически. Наряду с естественными языками были разработаны формальные языки (нотная запись, языки программирования и др.). Основное отличие формальных языков от естественных состоит в наличии не только жестко зафиксированного алфавита, но и строгих правил грамматики и синтаксиса. Так, правила записи математических выражений можно рассматривать как формальный язык, имеющий алфавит (цифры) и позволяющий не только именовать и записывать объекты (числа), но и выполнять над ними арифметические операции по строго определенным правилам. В некоторых языках знаками являются не буквы и цифры, а другие символы - например, знаки химических элементов, музыкальные ноты, изображения элементов электрических или логических схем, дорожные знаки, точки и тире (код азбуки морзе) и др. Таким образом, представление информации посредством естественных и формальных языков производится с помощью алфавита - определенного набора знаков. Знаки могут иметь различную физическую природу. Например, для письма служат знаки, которые являются изображениями на бумаге, в устной речи в качестве знаков выступают различные звуки (фонемы), а при обработке текста на компьютере знаки представляются в форме последовательностей электрических импульсов.

2. Алгоритмическое. программирование. Основные способы организации действий в алгоритмах

Одним из первых алгоритмических языков программирования был известный всем Бейсик (Basic), созданный в 1964 г. В настоящее время кроме Бейсика существует достаточно много языков программирования алгоритмического типа: Pascal, С и др. Язык программирования формируется на основе определенного алфавита и строгих правил построения предложений (синтаксиса). В алфавит языка могут входить буквы, цифры, математические символы, а также операторы, например Print (печать). Input (ввод) и др. С помощью алгоритмических языков программирования (их еще называют структурными языками программирования) любой алгоритм можно представить в виде последовательности основных алгоритмических структур: линейной, ветвления, цикла. Линейные алгоритмы. Линейные алгоритмы состоят из нескольких команд (операторов), которые должны быть выполнены последовательно одна за другой. Такие последовательности команд будем называть сериями.

Чтобы сделать алгоритм более наглядным, часто используют блок-схемы. Различные элементы алгоритма изображаются с помощью различных геометрических фигур: начало и конец алгоритма обозначаются прямоугольниками с закругленными углами, а последовательности команд - прямоугольниками (рис. 3).

Ветвление. В отличие от линейных алгоритмов, где команды выполняются последовательно одна за другой, в алгоритмические структуры ветвление входит условие, в зависимости от выполнения или невыполнения которого реализуется та или иная последовательность команд (серий) (рис. 4).

Цикл. В алгоритмические структуры цикл входит серия команд, выполняемая многократно. Такая последовательность команд называется телом цикла.

Циклические алгоритмические структуры бывают

двух типов:

- циклы со счетчиком, в которых тело цикла выполняется определенное количество раз (рис. 5);

- циклы с условием,

Цикл с условием Когда заранее известно, какое число повторений тела цикла необходимо выполнить, можно воспользоваться циклом со счетчиком.

Однако часто бывает необходимо повторить тело цикла, но заранее неизвестно, какое количество раз это надо сделать. В таких случаях количество повторений зависит от выполнения некоторого условия.

Условие выхода из цикла можно поставить в начале, перед телом цикла (рис. 6, а), или в конце, после тела цикла

1. Двоичная система счисления. Запись чисел в двоичной системе счисления

Система счисления - это знаковая система, в которой числа записываются по определенным правилам с помощью цифр - символов некоторого алфавита. Например, в десятичной системе для записи числа существует десять всем хорошо известных цифр: 0, 1, 2 и т. д.

Все системы счисления делятся на позиционные и непозиционные. В позиционных системах счисления значение цифры зависит от ее положения в записи числа, а в непозиционных - не зависит. Позиция цифры в числе называется разрядом. Разряд числа возрастает справа налево, от младших разрядов к старшим.

Каждая позиционная система использует определенный алфавит цифр и основание. В позиционных системах счисления основание системы равно количеству цифр (знаков в ее алфавите) и определяет, во сколько раз различаются значения цифр соседних разрядов числа,

Наиболее распространенными в настоящее время позиционными системами счисления являются десятичная и двоичная:

Система счисления Основание Алфавит цифр

Десятичная 10 0,1,2,3,4,5,6,7,8,9

Двоичная 2 0,1

Рассмотрим в качестве примера десятичное число 555. Цифра 5 встречается трижды, причем самая правая обозначает пять единиц, вторая справа - пять десятков и, наконец, третья - пять сотен.

Число 555 записано в привычной для нас свернутой форме. Мы настолько привыкли к такой форме запи си, что уже не замечаем, как в уме умножаем цифры числа на различные степени числа 10. В развернутой форме запись числа 555 в десятичной системе выглядит следующим образом: 55510 = 5 Х 10 2 + 5 Х 10 1 4- 5 Х 10°.

Как видно из примера, число в позиционных системах счисления записывается в виде суммы степеней основания данном случае 10), коэффициентами при этом являются цифры данного числа. В двоичной системе основание равно 2, а алфавит состоит из двух цифр (0 и 1). В развернутой форме двоичные числа записываются в виде суммы степеней основания 2 с коэффициентами, в качестве которых выступают цифры 0 или 1. Например, развернутая запись двоичного числа 101 а будет иметь вид: 1Х2 2 +0Х2 1 +1Х2 0 .

2. Магистрально-модульный принцип построения компьютера

В основу архитектуры современных персональных компьютеров положен магистрально-модульный принцип Модульный принцип позволяет потребителю самому комплектовать нужную ему конфигурацию компьютера и производить при необходимости ее модернизацию. Модульная организация компьютера опирается на магистральный (шинный) принцип обмена информацией между устройствами. Магистраль включает в себя три многоразрядные шины: шину данных, шину адреса и шину управления.

Шина данных. По этой шине данные передаются между различными устройствами. Разрядность шины данных определяется разрядностью процессора, т. е. количеством двоичных разрядов, которые процессор обрабатывает за один такт. За 25 лет, со времени создания первого персонального компьютера (1975 г.), разрядность шины данных увеличилась с 8 до 64 бит. Шина адреса. Каждая ячейка оперативной памяти имеет свой адрес. Адрес передается по адресной шине. Разрядность шины адреса определяет адресное пространство процессора, т. е. количество ячеек оперативной памяти, которые могут иметь уникальные адреса. Количество адресуемых ячеек памяти можно рассчитать по формуле:

N = 2 1 , где I - разрядность шины адреса.

В первых персональных компьютерах разрядность шины адреса составляла 16 бит, а количество адресуемых ячеек памяти - N = 2 ==65 536.

В современных персональных компьютерах разрядность шины адреса составляет 32 бита, а максимально возможное количество адресуемых ячеек памяти равно ЛГ = 2 32 = 4 294 967 296.

Шина управления. По шине управления передаются сигналы, определяющие характер обмена информацией по магистрали. Сигналы управления определяют, какую операцию - считывание или запись информации из памяти - нужно производить, синхронизируют обмен информацией между устройствами и т. д

1. Кодирование информации. Способы кодирования

Кодирование информации. В процессе преобразования информации из одной формы представления (знаковой системы) в другую осуществляется кодирование. Средством кодирования служит таблица соответствия, которая устанавливает взаимно однозначное соответствие между знаками или группами знаков двух различных знаковых систем.

В процессе обмена информацией часто приходится производить операции кодирования и декодирования информации. При вводе знака алфавита в компьютер путем нажатия соответствующей клавиши на клавиатуре выполняется его кодирование, т. е. преобразование в компьютерный код. При выводе знака на экран монитора или принтер происходит обратный процесс - декодирование, когда из компьютерного кода знак преобразуется в графическое изображение.

Кодирование изображений и звука. Информация, в том числе графическая и звуковая, может быть представлена в аналоговой или дискретной форме. При аналоговом представлении физическая величина принимает бесконечное множество значений, причем ее значения изменяются непрерывно. При дискретном представлении физическая величина принимает конечное множество значений, причем ее величина изменяется скачкообразно.

Примером аналогового представления графической информации может служить, скажем, живописное полотно, цвет которого изменяется непрерывно, а дискретного - изображение, напечатанное с помощью струйного принтера и состоящее из отдельных точек разного цвета.

Примером аналогового хранения звуковой информации является виниловая пластинка (звуковая дорожка изменяет свою форму непрерывно), а дискретного - аудиокомпакт-диск (звуковая дорожка кото рого содержит участки с различной отражающей способностью).

Графическая и звуковая информация из аналоговой формы в дискретную преобразуется путем дискретизации, т. е. разбиения непрерывного графического изображения и непрерывного (аналогового) звукового сигнала на отдельные элементы. В процессе дискретизации производится кодирование, т. е. присвоение каждому элементу конкретного значения в форме кода.

Дискретизация - это преобразование непрерывных изображений и звука в набор дискретных значений, каждому из которых присваивается значение его кода.

Кодирование информации в живых организмах. Генетическая информация определяет строение и развитие живых организмов и передается по наследству. Хранится генетическая информация в клетках организмов в структуре молекул ДНК (дезоксирибонукле-иновой кислоты). Молекулы ДНК состоят из четырех различных составляющих (нуклеотидов), которые образуют генетический алфавит.

Молекула ДНК человека включает в себя около трех миллиардов пар нуклеотидов, и в ней закодирована вся информация об организме человека: его внешность, здоровье или предрасположенность к болезням, способности и т. д.

2. Основные характеристики компьютера (разряд-.ность, тактовая частота, объем оперативной и внешней памяти, производительность и др.)

Процессор. Важнейшей характеристикой процессора, определяющей его быстродействие, является его частота, т. е. количество базовых операций (например, операций сложения двух двоичных чисел), которые производит процессор за 1 секунду. За двадцать с небольшим лет тактовая частота процессора увеличилась в 500 раз, от 4 МГц (процессор 8086, 1978 г.) до 2 ГГц (процессор Pentium 4, 2001 г.).

Другой характеристикой процессора, влияющей на его производительность, является разрядность процессора. Разрядность процессора определяется количеством двоичных разрядов, которые процессор обрабатывает за один такт. Разрядность процессора увеличилась за 20 лет в 8 раз. В первом отечественном школьном компьютере УАгатФ (1985 г.) был установлен процессор, имевший разрядность 8 бит, у современного процессора Pentium 4 разрядность равна 64 бит.

Оперативная (внутренняя) память. Оперативная память представляет собой множество ячеек, причем каждая ячейка имеет свой уникальный двоичный адрес. Каждая ячейка памяти имеет объем 1 байт.

В персональных компьютерах величина адресного пространства процессора и величина фактически установленной оперативной памяти практически всегда различаются. Например, объем адресуемой памяти может достигать 4 Гбайт, а величина фактически установленной оперативной памяти будет значительно меньше - скажем, УвсегоФ 64 Мбайт.

Оперативная память аппаратно реализуется в виде модулей памяти различных типов (SIMM, DIMM) и разного объема (от 1 до 256 Мбайт). Модули различаются по своим геометрическим размерам: устаревшие модули SIMM имеют 30 или 72 контакта, а современные модули DIMM - 168 контактов.

Долговременная (внешняя) память. В качестве внешней памяти используются носители информации различной информационной емкости: гибкие диски (1,44 Мбайт), жесткие диски (до 50 Гбайт), оптические диски CD-ROM (650 Мбайт) и DVD (до 10 Гбайт). Самыми медленными из них по скорости обмена данными являются гибкие диски (0,05 Мбайт/с), а самыми быстрыми - жесткие диски (до 100 Мбайт/с).

Производительность компьютера. Производительность компьютера является его интегральной характеристикой, которая зависит от частоты и разрядности процессора, объема оперативной (внутренней) и долговременной (внешней) памяти и скорости обмена данными. Производительность компьютера нельзя вычис лить, она определяется в процессе тестирования по скорости выполнения определенных операций в стандартной программной среде.

Билетє 6

1. Качественные и количественные характеристики информации. Свойства информации (новизна, актуальность, достоверность и др.). Единицы измерения количества информации

Информация в биологии. В биологии понятие информация связывается с целесообразным поведением живых организмов. Понятие информация в биологии применяется также в связи с исследованиями механизмов наследственности. Генетическая информация передается по наследству и хранится во всех клетках живых организмов. Информация в кибернетике. В кибернетике (науке об управлении) понятие информация используется для описания процессов управления в сложных системах (живых организмах или технических устройствах). Информация и знания. Человек получает информацию из окружающего мира с помощью органов чувств, анализирует ее и выявляет существенные закономерности посредством мышления, хранит полученную информацию в памяти. Процесс систематического научного познания окружающего мира приводит к накоплению информации в форме знаний (фактов, научных теорий и т. д.). Таким образом, с точки зрения процес са познания информация может рассматриваться как знания.

Свойства информации. Участники дискуссии должны владеть тем языком, на котором ведется общение, тогда информация будет понятной. Только при условии, что информация полезна, дискуссия приобретает практическую ценность. Примерами передачи и получения бесполезной информации могут служить некоторые конференции и чаты в Интернете.

Широко известен термин Усредства массовой информацииФ (газеты, радио, телевидение), которые доводят информацию до каждого члена общества. Обязательно, чтобы такая информация была достоверной и актуальной. Недостоверная информация вводит членов общества в заблуждение и может стать причиной возникновения социальных потрясений. Неактуальная информация бесполезна, и поэтому никто, кроме историков, не читает прошлогодних газет.

Чтобы человек мог правильно ориентироваться в окружающем мире, ему нужна полная и точная информация. Задача получения полной и точной информации стоит перед наукой. Человек получает полную и точную информацию о природе, обществе и технике в процессе обучения.

Единицы измерения количества информации. За единицу количества информации принимается такое количество информации, которое содержит сообщение, уменьшающее неопределенность знаний в два раза. Такая единица названа бит.

Следующей по величине единицей измерения количества информации является байт, причем

1 байт = 2 3 бит = 8 бит.

Кратные байту единицы измерения количества информации вводятся следующим образом:

1 Кбайт = 2 10 байт = 1024 байт;

1 Мбайт = 2 10 Кбайт = 1024 Кбайт;

1 Гбайт = 2 10 Мбайт = 1024 Мбайт.

2. Внешняя память компьютера. Различные виды носителей информации, их характеристики (информационная емкость, быстродействие и др.)

Основной функцией внешней памяти компьютера является способность долговременно хранить большой объем информации (программы, документы, аудио-и видеоклипы и т. д.). Устройство, которое обеспечивает запись/считывание информации, называется накопителем или дисководом, а хранится информация на носителях (например, дискетах).

В накопителях на гибких магнитных дисках (НГМД или дискетах) и накопителях на жестких магнитных дисках (НЖМД или винчестерах}, в основу записи, хранения и считывания информации положен магнитный принцип, а в лазерных дисководах - оптический принцип.

Гибкие магнитные диски. Гибкие магнитные диски помещаются в пластмассовый корпус. Такой носитель информации называется дискетой. Дискета вставляется в дисковод, вращающий диск с постоянной угловой скоростью. Магнитная головка дисковода устанавливается на определенную концентрическую дорожку диска, на которую и записывается (или считывается) информация.

В целях сохранения информации гибкие магнитные диски следует предохранять от воздействия сильных магнитных полей и нагревания, так как это может привести к размагничиванию носителя и потере информации.

Жесткие магнитные диски. Жесткие магнитные диски представляют собой несколько десятков дисков, размещенных на одной оси, заключенных в металлический корпус и вращающихся с высокой угловой скоростью. За счет множества дорожек на каждой стороне дисков и большого количества дисков информационная емкость жестких дисков может в десятки тысяч раз превышать информационную емкость дискет и достигать 50 Гбайт.

Лазерные дисководы и диски. Лазерные дисководы используют оптический принцип чтения информации. На лазерных дисках CD (CD - Compact Disk, компакт диск) и DVD (DVD - Digital Video Disk, цифровой видеодиск) информация записана на одну спиралевидную дорожку (как на грампластинке), содержащую чередующиеся участки с различной отражающей способностью. Лазерный луч падает на поверхность вращающегося диска, а интенсивность отраженного луча зависит от отражающей способности участка дорожки и приобретает значения 0 или 1.

Для сохранности информации лазерные диски надо предохранять от механических повреждений (царапин), а также от загрязнения.

Для пользователя имеют существенное значение некоторые технические характеристики различных устройств хранения информации: информационная емкость, скорость обмена информацией, надежность ее хранения (табл. 2).

Накопители и носители информации

Тип Емкость Скорость(Мб/c) Опасность

НГМД 1,44 Мб 0,05 Магн. поля

НЖМД до 50Гб до 100 Удары

CD-ROM 650Мб до 7,8 Царапины и

DVD-ROM до 17Гб до 6,8 |загрязнение

1. Информация и информационные процессы в природе, обществе, технике. Информационная деятельность человека

I К концу XX в. стала складываться, сначала в рамках кибернетики, а затёминформатики, информационная картина мира. Строение и функционирование сложных систем различной природы (биологических, социальных, технических) оказалось невозможным объяснить, не рассматривая общих закономерностей информационных процессов.

Получение и преобразование информации является условием жизнедеятельности любого организма. Даже простейшие одноклеточные организмы постоянно воспринимают и используют информацию, например, о температуре и химическом составе среды для выбора наиболее благоприятных условий существования.

Любой живой организм, в том числе человек, является носителем генетической информации, которая передается по наследству. Генетическая информация хранится во всех клетках организма в молекулах ДНК, |

Человек воспринимает окружающий мир (получает информацию) с помощью органов чувств (зрения, слуха, обоняния, осязания, вкуса). Чтобы правильно ориентироваться в мире, он запоминает полученные сведения (хранит информацию). В процессе достижения каких-либо целей человек принимает решения (обрабатывает информацию), а в процессе общения с другими людьми - передает и принимает информацию. Человек живет в мире информации.

Процессы, связанные с получением, хранением, обработкой и передачей информации, называются информационными процессами.

Информационные процессы характерны не только для живой природы, человека и общества, но и для техники Человеком разработаны технические устройства в часнрсти компьютеры, которые специально предназначены для автоматической обработки информации.

2. Объектно-ориентированное программирование. Объекты: свойства и методы. Классы объектов

объектно-ориентированное программирование является в настоящее

время наиболее популярной технологией программирования. Объектно-ориентированными языками программирования являются Visual Basic, Visual Basic for Application (VBA), Delphi и др.

Инкапсуляция. Основной единицей в объектно-ориентированном программировании является объект, который заключает в себе, инкапсулирует, как описывающие его данные (свойства), так и средства обработки этих данных (методы).

Классы объектов и экземпляры класса, объекты, инкапсулирующие одинаковый перечень свойств и методов, объединяются в классы. Каждый отдельный объект является экземпляром класса. Экземпляры класса могут иметь отличающиеся значения свойств.

например в среде Windows&Office в приложении word существует класс объектов документ, который обозначается следующим образом:

Класс объектов может содержать множество различных документов, каждый из которых имеет свое имя. Например, один из документов может иметь имя Проба.doc
Documents ("Проба.docФ)

Объекты в приложениях образуют некоторую иерархию. На вершине иерархии объектов находится приложение. Так, иерархия объектов приложения Word включает в себя следующие объекты: приложение ( Aplication), документ (Documents), фрагмент документа (Selection),символ (Character) и др.

Полная ссылка на объект состоит из ряда имен вложенных последовательно друг в друга объектов. Разделителями имен объектов в этом ряду являются точки, ряд начинается с объекта наиболее высокого уровня и заканчивается именем интересующего нас объекта.

Application. Documents ("Проба. doc")

Методы объекта. Чтобы объект выполнил какую-либо операцию, необходимо задать метод. Многие методы имеют аргументы, которые позволяют установить параметры выполняемых действий. Для присваивания аргументам конкретных значений применяется двоеточие и знак равенства, а между собой аргументы отделяются запятой.

Синтаксис команды применения метода объекта следующий:

Объект.Метод арг1:=значение, арг2:=значение

Например, операция открытия в приложении Word документа ripo6a.doc должна содержать не только название метода Open, но и указание пути к открываемому файлу (аргументу метода FileName необходимо присвоить конкретное значение):

Documents () . Open FileName: ="С: ДокументыПроба. doc"

Свойства объекта. Чтобы изменить состояние объекта, необходимо определить новые значения его свойств. Для присваивания свойству конкретного значения используется знак равенства. Синтаксис установки значения свойства объекта следующий:

Объект.Свойство = ЗначениеСвойства

Одним из классов объектов является класс символов Characters (). Экземпляры класса нумеруются:

Characters (1), Characters (2) и т. д. Установим во фрагменте текста (объект Selection) для первого символа (объект Characters (1)) начертание полужирный (свойство Bold).

Свойство Bold имеет два значения и может быть установлено (значение True) или не установлено (значение False). Значения True и False являются ключевыми словами языка.

Процессор. Процессор может обрабатывать различные виды информации: числовую, текстовую, графическую, видео и звуковую. Процессор является электронным устройством, поэтому различные виды информации должны в нем обрабатываться в форме последовательностей электрических импульсов.

Такие последовательности электрических импульсов можно записать в виде последовательностей нулей и единиц (есть импульс - единица, нет импульса - нуль), которые называются машинным языком.

Устройства ввода и вывода информации. Человек не воспринимает электрические импульсы и очень плохо понимает информацию, представленную в форме последовательностей нулей и единиц, следовательно, в составе компьютера требуются специальные устройства ввода и вывода информации.

Устройства ввода УпереводятФ информацию с языка человека на машинный язык компьютера, а устройства вывода, наоборот, делают информацию, представленную на машинном языке, доступной для человеческого восприятия.

Устройства ввода информации. Ввод числовой и текстовой информации осуществляется с помощью клавиатуры. Для ввода графической информации или работы с графическим интерфейсом программ чаще всего применяют манипуляторы типа мышь (для настольных персональных компьютеров) и трекбол или тачпад (для портативных компьютеров).

Если мы хотим ввести в компьютер фотографию или рисунок, то используем специальное устройство - сканер. В настоящее время все большее распространение получают цифровые, камеры (фотоаппараты и видеокамеры), которые формируют изображения уже в компьютерном формате.

Процессор опер. память

магистраль

устр. Ввода долг.память уст.вывода .

клавиатура нгмд монитор

мышь cd-rom принтер

сканер dvd-rom плоттер

Для ввода звуковой информации предназначен микрофон, подключенный ко входу специальной звуковой платы, установленной в компьютере.

Управлять компьютерными играми удобнее посредством специальных устройств - игровых манипуляторов {джойстиков).

Устройства вывода информации. Наиболее универсальным устройством вывода является монитор, на экране которого высвечивается числовая, текстовая, графическая и видеоинформация.

Для сохранения информации в виде Утвердой копииФ на бумаге служит принтер, а для вывода на бумагу сложных чертежей, рисунков и схем большого формата - плоттер (графопостроитель).

Оперативная и долговременная память. В компьютере информация хранится в оперативной (внутренней) памяти. Однако при выключении компьютера вся информация из оперативной памяти стирается.

Долговременное хранение информации обеспечивается внешней памятью. В качестве устройств внешней памяти обычно выступают накопители на гибких магнитных дисках {НГМД), накопители на жестких магнитных дисках (НЖМД) и оптические накопители (CD-ROM и DVD-BOM).

Магистраль. Обмен информацией между отдельными устройствами компьютера производится по магистрали (рис. 8).

Подключение компьютера к сети. Человек постоянно обменивается информацией с окружающими его людьми. Компьютер может обмениваться информацией с другими компьютерами с помощью локальных и глобальных компьютерных сетей. Для этого в его состав включают сетевую плату и модем.

2 .Алгоритм позволяет формализовать выполнение задачи. Предположим, что пользователю надо провести редактирование текста и из текста Уинформационная модельФ получить текст Умодель информационнаяФ.

Запись алгоритма на естественном языке. Запишем необходимую последовательность действий т е алгоритм Редактирование текста, на естественном

языке, который понятен человеку (пользователю компьютера):

1) выделить слово информационная + пробел;

2) вырезать этот фрагмент;

3) установить курсор на позицию после слова модель + пробел;

4) вставить фрагмент текста.

Запись алгоритма на алгоритмическом языке.

Каждая команда алгоритма должна однозначно определять действие исполнителя, т. е. алгоритм должен быть точным. Однако естественный язык не очень подходит для записи алгоритмов, так как не обладает достаточной строгостью и определенностью при записи команд.

Для достижения необходимой точности и строгости алгоритм следует формализовать, т. е. записать на одном из формальных языков. В школьной информатике в качестве такого формального языка часто используют алгоритмический язык.

Запишем алгоритм Редактирование текста на алгоритмическом языке:

алг Редактирование текста

дано информационная модель

надо модель информационная

нач выделить символы с 1 по 15

вырезать

установить курсор на позицию 7

вставить
Графическое представление алгоритма. Чтобы сделать алгоритм более наглядным, часто применяют блок-схемы. На блок-схеме (рис. 9) хорошо видна структура алгоритма, по которой исполнителю (человеку) удобно отслеживать процесс его выполнения.

1. Программное управление работой компьютера. Программное обеспечение компьютера

Данные и программы. Числовая, текстовая, графическая и звуковая информация может быть представлена и обработана на компьютере в форме данных. Чтобы процессор УзналФ, что ему делать с данными, как их обрабатывать, он должен получить определенную команду (инструкцию). Например, Усложить два числаФ или Узаменить один символ на другойФ. Обычно для решения какой-либо задачи процессору требуется не единичная команда, а их последовательность. Последовательность команд, которую выполняет компьютер в процессе обработки данных, называется программой.

Программное обеспечение. В течение нескольких десятилетий создавались программы, нужные для обработки различных данных. Совокупность требуемых программ составляет программное обеспечение

компьютера. Операционная система является базовой и необходимой составляющей программного обеспечения компьютера, без нее компьютер не может работать в принципе.

Для выполнения на компьютере конкретных работ (создания текстов и рисунков, обработки числовых данных и т. д.) требуется прикладное программное обеспечение. Прикладное программное обеспечение можно разделить на две группы программ: системы

программирования и приложения.

Системы программирования являются для программистов-профессионалов инструментами разработки программ на различных языках программирования (Basic, Pascal, С и др.). В настоящее время появились системы визуального программирования (Visual Basic, Borland Delphi и др.), которые позволяют даже начинающему пользователю компьютера создавать несложные программы. Приложения предоставляют пользователю возможность обрабатывать текстовую, графическую, числовую, аудио- и видеоинформацию, а также работать в компьютерных сетях, не владея программированием. Практически каждый пользователь компьютера нуждается в приложениях общего назначения, к числу которых относятся: текстовые и графические редакторы, электронные таблицы, системы управления базами данных, а также приложения для создания мультимедиа-презентаций. В связи со стремительным развитием глобальных и локальных компьютерных сетей все большее значение приобретают различные коммуникационные программы. Из-за широкого распространения компьютерных вирусов можно отнести к отдельной группе антивирусные программы.

Для профессиональных целей квалифицированными пользователями компьютера используются приложения специального назначения. К ним относятся системы компьютерной графики, системы автоматизированного проектирования (САПР), бухгалтерские программы, компьютерные словари и системы автоматического перевода и др. Все большее число пользователей применяет обучающие программы для самообразования или в учебном процессе. Прежде всего, это программы обучения иностранным языкам, программы-репетиторы и тесты по различным предметам и т. д. Большую пользу приносят различные мультимедиа-приложения (энциклопедии, справочники и т. д.) на лазерных дисках, содержащие огромный объем информации и средства быстрого ее поиска.

Достаточно большое число пользователей начинают знакомство с компьютером с компьютерных игр, которые бывают самых различных типов: логические, стратегические, спортивные и т. д.

2. Основные типы и способы организации данных (переменные и массивы)

Переменные. В алгоритмических и объектно-ориентированных языках программирования (в частности, в языке Visual Basic) переменные играют важнейшую роль. Они предназначены для хранения и обработки данных в программах.

Переменные задаются именами, определяющими области памяти, в которых хранятся их значения. данные различных типов (целые или вещественные числа, последовательности символов, логические значения и т. д.). Тип переменных задается типом данных, которые могут быть значениями переменных. Значениями переменных числовых типов (Byte, Integer, Long, Single, Double) являются числа. Логические переменные (Boolean) могут принимать значения True или False. Значениями строковых переменных (String) являются последовательности символов и т. д. Над различными типами данных, а следовательно, переменными допустимы различные операции. Так, над числовыми переменными возможны арифметические операции, над логическими переменными - логические операции, над строковыми - операции преобразования символьных строк и т. д.

Различные типы данных требуют для своего хранения в оперативной памяти компьютера разное количество ячеек (байт). Так, для хранения целого числа в интервале от 0 до 255 в переменных типа Byte достаточно одной ячейки памяти (одного байта), для хранения вещественного числа с двойной точностью в переменных типа Double требуется уже восемь ячеек (восемь байт), а для хранения символьных строк в переменных типа String - одна ячейка на каждый символ. Имя любой переменной (идентификатор) уникально и не может меняться в процессе выполнения программы. Имя переменной может состоять из различных символов (латинские и русские буквы, цифры и т. д.), но должно обязательно начинаться с буквы и не включать знак У.Ф (точку). Количество символов в имени не может быть более 255. Например, числовую переменную можно назвать А или Число, а строковую - А или Строка.

Простейший способ задания типа переменной (ее "объявления) состоит в приписывании к имени переменной определенного суффикса. Например, числовую переменную типа Integer можно задать как А%, а строковую переменную типа String - как А$. Переменная может получить или изменить значение с помощью оператора присваивания: Let ИмяПеременной = Выражение

Ключевое слово Let в большинстве случаев не используется. Переменная получает значение, равное значению выражения (арифметического, строкового или логического).

Например, после выполнения фрагмента программы intA = 3 intB = 4 intC = intA"2 + intB"2

целочисленная переменная intC примет значение, равное числу 25.

Массивы. одномерные, которые можно представить в форме одномерной таблицы, и двумерные (они представляются в форме двумерной таблицы).

Массивы могут быть разных типов: числовые, строковые и т. д.

Массив состоит из пронумерованной последовательности элементов. Номера в этой последовательности называются индексами. Каждый из этих элементов является переменной, т. е. обладает именем и значением, и поэтому массив можно назвать переменной с индексом.

Например, одномерный строковый массив strA (I i, содержащий буквы русского алфавита, можно представить в виде следующей таблицы:

I 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 Е 33

A(I) А Б В Г Д Е Ё Ж З И Й К Л М Н О ПЕЯ

Индекс может принимать любые целочисленные значения (в данном случае от 1 до 33). Обращение к элементу массива производится по его имени, состоящему из имени массива и значения индекса, например strA(5).

Каждый элемент массива может обладать собственным значением. Так, значением элемента рассмотренного выше строкового массива s t гА (5) является строка д.

Билет є 19

1. Текстовый редактор. Назначение и основные функции

Текстовые редакторы - это программы для создания, редактирования, форматирования, сохранения и печати документов. Современный документ может содержать, кроме текста, и другие объекты (таблицы, диаграммы, рисунки и т. д.).

Более совершенные текстовые редакторы, имеющие целый спектр возможностей по созданию документов (например, поиск и замена символов, средства проверки орфографии, вставка таблиц и др.), называют иногда текстовыми процессорами. Примером такой программы является Word из офисного пакета Microsoft Office.

Мощные программы обработки текста - настольные издательские системы - предназначены для подготовки документов к публикации. Пример подобной системы - Adobe PageMaker.

Редактирование - преобразование, обеспечивающее добавление, удаление, перемещение или исправление содержания документа. Редактирование документа обычно производится путем добавления, удаления или перемещения символов или фрагментов текста.

Объектно-ориентированный подход дает возможность реализовать механизм встраивания и внедрения объектов (OLE - Object Linking Embedding). Этот механизм позволяет копировать и вставлять объекты из одного приложения в другое. Например, работая с документом в текстовом редакторе Word, в него можно встроить изображения, анимацию, звук и даже видеофрагменты и таким образом из обычного текстового документа получить мультимедиа-документ.

Форматирование - преобразование, изменяющее форму представления документа. В началФ работы над документом целесообразно задать параметры страницы: ее формат (размер), ориентацию, размер полей и др.

Форматирование абзаца. Абзац является одним из основных объектов текстового документа. В компьютерных документах абзацем считается любой текст, заканчивающийся управляющим символом (маркером) конца абзаца. Ввод конца абзаца обеспечивается нажатием клавиши {Enter} и отображается символом Ц.

В процессе форматирования абзаца задаются параметры его выравнивания (выравнивание отражает расположение текста относительно границ полей страницы), отступы (абзац целиком может иметь отступы слева и справа) и интервалы (расстояние между строк абзаца), отступ красной строки и др.

форматирование символов. Символы - это буквы, цифры, пробелы, знаки пунктуации, специальпые символы, такие как @, *, &. Символы можно форматировать (изменять их вид), задавая шрифт, размер и начертание.

Шрифт - полный набор символов определенного начертания, включая прописные и строчные буквы, знаки препинания, специальные символы, цифры и знаки арифметических действий. Для каждого исторического периода и разных стран характерен шрифт определенного рисунка. Каждый шрифт имеет свое название, например Times New Roman, Anal, Courier и др.

По способу представления в компьютере различаются шрифты растровые и векторные. Для представления растровых шрифтов служат методы растровой графики, символы шрифта - это группы пикселей. Растровые шрифты допускают масштабирование только с определенными коэффициентами.

В векторных шрифтах символы описываются математическими формулами и возможно произвольное их масштабирование. Среди векторных шрифтов наибольшее распространение подучили шрифты типа TrueType.

Размер шрифта. Единицей измерения размера шрифта является пункт (1 пт = 0,376 мм). В текстовом редакторе Word по умолчанию используется шрифт Times New Roman размером 12 пт.

Начертание. Кроме нормального (обычного) начертания символов обычно применяют полужирное, курсивное и полужирное курсивное.

Формат файла определяет способ хранения текста в файле. Простейший формат текстового файла (ТХТ) содержит только символы (числовые коды символов), другие же форматы (DOC, RTF) содержат дополнительные управляющие числовые коды, которые обеспечивают форматирование текста.

2. Двоичное кодирование текстовой информации. Различные кодировки кириллицы

Начиная с конца 60-х годовкомпыотеры все больше стали использоваться для обработки текстовой информации, и в настоящее время основная доля персональных компьютеров в мире. (и большая часть времени) занята обработкой-именно текстовой информации. ...

Традиционно для кодирования одного символа используется количество информации! равное 1 байту, т.е.1=1байт=8бит.

Если рассматривать символы как возможные события, то можно вычислить, какое количество различных символов можно закодировать: N = 2 1 =2 8 - 256.

Такое количество символов вполне достаточно для представления текстовой информацииФ включая прописные и заглавные буквы.русского и латинского алфавита, цифры, знаки, графические символы и т.д.

Кодирование заключается в том что каждому символу ставится в соответствие уникальный двоичный код от 0 до 255 или соответствующий ему двоичный код от 00000000 до 11111111. Таким образом, человек различает символы по их начертанию, а компьютер - по их коду.

При вводе в компьютер текстовой информации происходит ее двоичное кодирование, изображение символа преобразуется в его двоичный код. Пользователь нажимает на клавиатуре клавишу с символом - и в компьютер поступает определенная последовательность из восьми электрических импульсов (двоичный код символа). Код символа хранится в оперативной памяти компьютера, где занимает одну ячейку.

В процессе вывода символа на экран компьютера производится обратный процесс - декодирование, т. е. преобразование кода символа в его изображение. " Важно, что присвоение символу конкретного кода - это вопрос соглашения, которое фиксируется в кодовой таблице. Первые 33 кода (с 0 по 32) обозначают не символы, а операции (перевод строки, ввод пробела и т.д.).

Коды с 33 по 127 - интернациональные и соответствуют символам латинского алфавита, цифрам, знакам арифметических операций и знакам препинания.

Коды с 128 по 255 являются национальными, т. е-в национальных кодировках одному и тому же коду отвечают различные символы. К сожалению, в настоящее время существует пять различных кодовых таблиц для русских букв (КОИ-8, СР1251, СР866, Мае, ISO), поэтому тексты, созданные в одной кодировке, не будут правильно отображаться в другой.

Каждая кодировка задается своей собственной кодовой таблицей. Одному и тому же двоичному коду в различных кодировках поставлены в соответствие различные символы.

В последнее время появился новый международный стандарт Unicode, который отводит на каждый символ не один байт, а два, и потому с его помощью можно закодировать не 256 символов, а - 2 18 = 65 536 различных символов

Билет є 20

1. Графический редактор. Назначение и основные функции

Графический редактор - это программа создания, редактирования и просмотра графических изображений. Графические редакторы - две категории: растровые и векторные.

Растровые графические редакторы. Растровые графические редакторы являются наилучшим средством обработки фотографий и рисунков. Среди растровых графических редакторов есть простые, например стандартное приложение Paint, и мощные профессиональные графические системы, например Adobe Photoshop и CorelPhoto-Paint.

Растровое изображение хранится с помощью точек различного цвета (пикселей), которые образуют строки и столбцы. Любой пиксель имеет фиксированное положение и цвет. Хранение каждого пикселя требует некоторого количества бит информации, которое зависит от количества цветов в изображении. Качество растрового изображения определяется размером изображения (числом пикселей по горизонтали и вертикали) и количества цветов, которые могут принимать пиксели.

Растровые изображения очень чувствительны к масштабированию (увеличению или уменьшению). Когда растровое изображение уменьшается, несколько соседних точек превращаются в одну, поэтому теряется разборчивость мелких деталей изображения. При укрупнении изображения увеличивается размер каждой точки и появляется ступенчатый эффект, который виден невооруженным глазом.
Векторные графические редакторы.

С векторной графикой вы сталкиваетесь, когда работаете с системами компьютерного черчения и автоматизированного проектирования, с программами обработки трехмерной графики.. Распространены CorelDRAW и Adobe Illustrator.

Векторные изображения формируются из объектов (точка, линия, окружность и т. д.), Графический примитив точка задается своими координатами (X, У), линия - координатами начала (XI , У1) и конца (Х2, У2), окружность - координатами центра (X, У) и радиусом (Л), прямоугольник - величиной сторон и координатами левого верхнего угла (XI, У1) и правого нижнего угла (Х2, У2) и т. д. Для каждого примитива назначается также цвет.

Графические редакторы имеют набор инструментов для создания или рисования простейших графических объектов: прямой линии, кривой, прямоугольника, эллипса, многоугольника и т. д. Выделяющие инструменты. В графических редакторах над элементами изображения возможны различные операции: копирование, перемещение, удаление, поворот, изменение размеров и т. д. Процедура выделения аналогична процедуре рисования.

Инструменты редактирования рисунка позволяют вносить в рисунок изменения: стирать его части, изменять цвета и т. д. Используется инструмент Ластик, В векторных редакторах редактирование изображения возможно только путем удаления объектов, входящих в изображение, целиком. Операцию изменения цвета можно осуществить с помощью меню Палитра, содержащего набор цветов, используемых при создании или рисовании объектов.

Текстовые инструменты позволяют добавлять в рисунок текст и форматировать его.

В векторных редакторах тоже можно создавать текстовые области для ввода и форматирования текста. Кроме того, надписи к рисункам вводятся посредством так называемых выносок различных форм.

Масштабирующие инструменты в растровых графических редакторах дают возможность увеличивать или уменьшать масштаб представления объекта на экране, не влияя при этом на его реальные размеры. Обычно такой инструмент называется Лупа.

В векторных графических редакторах легко изменять реальные размеры объекта с помощью мыши.

2. Логическое умножение. Таблица истинности

В алгебре логики объединение двух (или нескольких) высказываний в одно с помощью союза УиФ называется операцией логического умножения или конъюнкцией.

Составное высказывание, образованное в результате операции логического умножения (конъюнкции), истинно тогда и только тогда, когда истинны входящие в него простые высказывания.

Операцию логического умножения (конъюнкцию) принято обозначать либо значками У л Ф,У&Ф. либо знаком умножения < Х Образуем составное высказывание F, которое получится в результате конъюнкции двух простых высказываний:

С точки зрения алгебры высказываний мы записали формулу функции логического умножения, аргументами которой являются логические переменные А и В, принимающие значения истина (1) и ложь (О).

Сама функция логического умножения F также может принимать лишь два значения - истина (1) и ложь (0). Значение логической функции определяется с помощью таблицы истинности данной функции

По таблице истинности легко определить истинность составного высказывания, образованного с по-мощью операции логического умножения. Рассмотрим, например, составное высказывание У2Х2=4 и ЗХЗ=10Ф. Первое простое высказывание истинно (А-1), а второе высказывание ложна (В- 0); по таблице определяем, что логическая функция принимает значение ложь (F == О), т. е. данное составное высказывание ложно.

Билет є 21

1. Электронные таблицы. Назначение и основные функции

Электронная таблица - это программа обработки числовых данных, хранящая и обрабатывающая данные в прямоугольных таблицах.

Электронная таблица состоит из столбцов и строк. Заголовки столбцов обозначаются буквами или сочетаниями букв (A, G, АВ и т. п.), заголовки строк - числами (1, 16, 278 и т. п.). Ячейка - место пересечения столбца и строки.

Каждая ячейка таблицы имеет свой собственный адрес. Адрес ячейки электронной таблицы составляется из заголовка столбца и заголовка строки, например: А1, F123, Л7. Ячейка, с которой производятся какие-то действия, выделяется рамкой и называется активной.

Типы данных. Электродные таблицы позволяют работать с тремя основными типами данных: число, текст и формула.

Числа в электронных таблицах Excel могут быть записаны в обычном числовом или экспоненциальном формате, например: 195,2 или 1.952Д +02. По умолчанию числа выравниваются в ячейке по правому краю. Это объясняется тем. что при размещении чисел друг под другом (в столбце таблицы) удобно иметь выравнивание по разрядам (единицы под единицами, десятки под десятками и т. д.).

Текстом в электронных таблицах Excel является последовательность символов, состоящая из букв, цифр и пробелов, например запись <32 МбайтФ является текстовой. По умолчанию текст выравнивается в ячейке по левому краю. Это объясняется традиционным способом письма (слева направо).

Формула должна начинаться со знака равенства и может включать в себя числа, имена ячеек, функции (Математические, Статистические. Финансовые, Дата и время я т. д.) и знаки математических операции. Например, формула У=А1+Д2Ф обеспечивает сложение чисел, хранящихся в ячейках А1 иВ2,аформу-ла <=А1*5Ф - умножение числа, хранящегося в ячейке.41, на 5. При вводе формулы в ячейке отображается не сама формула, а результат вычислений по этой формуле. При изменении исходных значений, входящих в формулу, результат пересчитывается немедленно.

Абсолютные и относительные ссылки. В формулах используются ссылки на адреса ячеек. Существуют два основных типа ссылок: относительные и абсолютные. Различия между ними проявляются при копировании" формулы из активной ячейки в другую ячейку.

Относительная ссылка в формуле используется | для указания адреса ячейки, вычисляемого относительно ячейки, в которой находится формула. При перемещении или копировании формулы из активной ячейки относительные ссылки автоматически обновляются в зависимости от нового положения формулы. Относительные ссылки имеют следующий вид: А1, ВЗ.

Абсолютная ссылка в формуле используется для | указания фиксированного адреса ячейки. При переме-| щении или копировании формулы абсолютные ссылки f не изменяются. В абсолютных ссылках перед неизменяемым значением адреса ячейки ставится знак доллара (например, $А$1).

Если символ доллара стоит перед буквой (например: $A), то координата столбца абсолютная, а строки - относительная. Если символ доллара стоит перед чис-| лом (например, А$1), то, наоборот, координата столбца относительная, а строки - абсолютная. Такие ссылки называются сдешанныли. ; .

Пусть, например, в ячейке С1 записана формула.тА$1+$В1, которая при копировании в ячейку D2 приобретает вид =В$1+$В2. Относительные ссылки g при копировании изменились, а абсолютные -нет. . Сортировка к поиск данных. Электронные таблицы позволяют осуществлять сортировку данных. Данные я электронных таблицах сортируются по возрастанию или убыванию. При сортировке данные выстраивают ся в определенном порядке. Можно проводить вложенные сортировки, т. е. сортировать данные по нескольким столбцам, при этом назначается последовательность сортировки столбцов.

В электронных таблицах возможен поиск данных в соответствии с указанными условиями - фильтрами. Фильтры определяются с помощью условий поиска (больше, меньше, равно и т. д.) и значений (200, 10 и т. д.). Например, больше 100. В результате поиска будут найдены те ячейки, в которых содержатся данные, удовлетворяющие заданному фильтру.

Построение диаграмм и графиков. Электронные таблицы позволяют представлять числовые данные в виде диаграмм или графиков. Диаграммы бывают различных типов (столбчатые, круговые и т. д.); выбор типа диаграммы зависит от характера данных.

2. Адресация в Интернете: доменная система имен и IP-адреса

IP-адресация. Чтобы в процессе обмена информацией компьютеры могли найти друг друга, в Интернете существует единая система адресации. Каждый компьютер, подключенный к Интернету, имеет свой уникальный 32-битный (в двоичной системе) IP-адрес.

По формуле определения количества информации легко подсчитать, что общее количество различных IP-адресов составляет более 4 миллиардов:

N - 2 32 - 4 294 967 296.

В десятичной записи IP-адрес компьютера в Интернете состоит из четырех чисел, разделенных точками, каждое из которых лежит в диапазоне от О до 255. Например, IP-адрес сервера компании МТУ-Интел записывается как 195.34.32.11.

Доменная система имей. Компьютерам легко находить друг друга по числовому IP-адресу, однако человеку запомнить числовой адрес непросто, и для удобства была введена доменная система имен (DNS- Domain Name System). Доменная система имен ставит в соответствие числовому IP-адресу каждого компьютера уникальное доменное имя.

Доменная система имен имеет иерархическую структуру: домены верхнего уровня - домены второго уровня - домены третьего уровня. Домены верхнего уровня бывают двух типов: географические (двухбуквенные -жаждой стране соответствует двухбуквенный код) и административные (трехбуквенные).

России принадлежит географический домен ru. Давно существующие серверы могут относиться к домену su (СССР). Обозначение административного домена позволяет определить профиль организации, владельца домена Имена компьютеров, которые являются серверами Интернета, включают в себя полное доменное имя и собственно имя компьютера. Доменные имена читаются справа налево. Крайняя правая группа букв обозначает домен верхнего уровня.

Так, основной сервер компании Microsoft имеет имя www.microsoft.com, а сервер компании МТУ-Интел - dialup.mtu.ru

Билет є 22

1. Базы данных. Назначение и основные функции

База данных- это информационная модель, позволяющая упорядочение хранить данные о группе объектов, обладающих одинаковым набором свойств.

Информация в базах данных хранится в упорядоченном виде..

Существует несколько различных типов баз данных: табличные, иерархические и сетевые.

Табличные базы данных. Табличная база данных содержит перечень объектов одного типа, т. е. объектов с одинаковым набором свойств. Такую базу данных удобно представлять в виде двумерной таблицы.

Столбцы такой таблицы называют полями; Поле базы данных - это столбец таблицы, включающий в себя значения определенного свойства.

Строки таблицы являются записями об объекте; эти записи разбиты на поля столбцами таблицы. Запись базы данных - это строка таблицы, которая содержит набор значений различных свойств объекта.

В каждой таблице должно быть, по крайней мере, одно ключевое поле, содержимое которого уникально для любой записи в этой таблице. Значения ключевого поля однозначно определяют каждую запись в таблице.

Иерархические базы данных. Иерархические базы данных графически могут быть представлены как дерево, состоящее из объектов различных уровней. Верхний уровень занимает один объект, второй - объекты второго уровня и т. д.

Между объектами существуют связи, каждый объект может включать в себя несколько объектов более низкого уровня. Такие объекты находятся в отношении предка (объект более близкий к корню) к потомку (объект более низкого уровня), при этом возможно, чтобы объект-предок не имел потомков или имел их несколько, тогда как у объекта-потомка обязательно только один предок. Объекты, имеющие общего предка, называются близнецами.

Иерархической базой данных является Каталог папок Windows, с которым можно работать, запустив Проводник.

Сетевые базы данных. Сетевая база данных образуется обобщением.иерархической за счет допущения объектов, имеющих более одного предка, т. е. каждый элемент вышестоящего уровня может быть связан одновременно с любыми элементами следующего уровня. Вообще, на связи между объектами в сетевых моделях не накладывается никаких ограничений.

Сетевой базой данных фактически является Всемирная паутина глобальной компьютерной сети Ив-тернет. Гиперссылки связывают между собой сотни миллионов документов в единую распределенную сетевую базу данных.

Системы управления базами данных (СУБД). Для

создания баз данных, а также выполнения операции поиска и сортировки данных предназначены специальные программы - системы управления базами данных (СУБД).

Таким образом, необходимо различать собственно базы данных (БД) - упорядоченные наборы данных, и системы управления базами данных (СУБД) - программы, управляющие хранением и обработкой данных. Например, приложение Access, входящее в офисный пакет программ Microsoft Office, является СУБД, позволяющей пользователю создавать и обрабатывать табличные базы данных.

2. Компьютерные вирусы: способы распространения, защита от вирусов

Компьютерные вирусы являются программами, ко-торые"могут УразмножатьсяФ и скрытно внедрять свои копии в файлы, загрузочные сектора дисков и документы.

В настоящее время известно несколько.десятков тысяч вирусов, заражающих компьютеры. различных операционных систем и распространяющихся по компьютерным, сетям. Обязательное свойство компьютерного вируса - способность к самокопированию.

Активизация компьютерного вируса нередко вызывает уничтожение программ и данных.

По Усреде обитанияФ вирусы разделяют на файловые, загрузочные, макровирусы и сетевые,

Файловые вирусы. Файловые вирусы различными способами внедряются в исполняемые файлы (программы) и обычно активизируются при их запуске. После запуска зараженной программы вирусы находятся в оперативкой памяти компьютера и остаются активными (т. е. могут заражать другие файлы) вплоть до момента выключения компьютера или перезагрузки операционной системы.

Профилактическая защита от файловых вирусов состоит в том, чтобы не запускать на исполнение файлы, полученные из сомнительного источника и предварительно не проверенные антивирусными программами.

Загрузочные вирусы. Загрузочные вирусы записывают себя в загрузочный сектор диска. При загрузке операционной системы с зараженного диска вирусы внедряются в оперативную память компьютера.

Макровирусы. Макровирусы заражают, файлы документов Word и электронных таблиц Excel. Макровирусы фактически представляют собой макрокоманды (макросы), которые встраиваются в документ.

После загрузки зараженного документа в приложение макровирусы постоянно присутствуют в памяти компьютера и могут заражать другие документы. Профилактическая защита от макровирусов состоит в предотвращении запуска вируса; При открытии документа в приложениях Word и Excel сообщается о присутствии в них макросов (потенциальных вирусов) и предлагается запретить их загрузку. Выбор запрета на загрузку макросов надежно защитит ваш компью тер от заражения макровирусами, однако отключит и полезные макросы, содержащиеся в документе.

Сетевые вирусы. По компьютерной сети могут распространяться и заражать компьютеры любые обычные вирусы. Это происходит, например, при получении зараженных файлов с серверов файловых архивов. Однако существуют и специфические сетевые вирусы, которые используют для своего распространения электронную почту и Всемирную паутину.

УПочтовый * вирус содержится во вложенных в почтовое сообщение файлах. Если получатель сообщения откроет вложенный файл (вирус), то произойдет заражение компьютера. Этого не случится после чтения самого почтового сообщения, так как заражено не почтовое сообщение, а вложенный в пего файл.

Профилактическая защита от почтовых вирусов заключается в том, чтобы не открывать вложенные в почтовые сообщения файлы, полученные из сомнительных источников.

Антивирусные программы. Наиболее эффективны в борьбе с компьютерными вирусами антивирусные программы, в которых используются различные принципы поиска и лечения зараженных файлов.

Самыми популярными и действенными антивирусными программами являются полифаги (например, AntiVira) Toolkit Pro). Принцип работы полифагов основан па проверке файлов и секторов дисков и оперативной памяти и поиске в пих известных и новых (неизвестных полифагу) вирусов.

Полифаги способны обеспечивать проверку файлов в процессе их загрузки в оперативную память. Такие программы называются антивирусными мониторами (например, AVP Monitor).

К достоинствам полифагов относится их универсальность, к недостаткам - большие размеры применяемых ими антивирусных баз данных, которые должны содержать информацию о максимально возможном количестве вирусов, что, в свою очередь, приводит к относительно небольшой скорости поиска вирусов

Билет є 16

1. Алгоритмическая структура цикл. Команды повторения. Привести пример

В алгоритмические структуры цикл входит серия команд, выполняемая многократно. Такая последовательность команд называется телом цикла.

Циклические алгоритмические структуры бывают двух типов:

- циклы со счетчиком, в которых тело цикла выполняется определенное количество раз;

- циклы, с условием, в которых тело цикла выполняется до тех пор, пока выполняется условие.

Алгоритмическая структура цикл может быть зафиксирована различными способами:

На языке программирования, например на языках Visual Basic и VBA, с использованием специальных инструкций, реализующих циклы различного типа.

Цикл со счетчиком. Когда заранее известно, какое число повторений тела цикла необходимо выполнить, можно воспользоваться циклической инструкцией (оператором цикла со счетчиком) For. . . Next (рис. 19).

Синтаксис оператора For... Next следующий:

строка, начинающаяся с ключевого слова For, является заголовком цикла, а строка с ключевым словом Next - концом цикла; между ними располагаются операторы, представляющие собой тело цикла.

В начале выполнения цикла значение переменной Счетчик устанавливается равным НачЗнач. При каждом УпроходеФ цикла переменная Счетчик увеличивается на величину шага. Если она достигает величины КонЗнач, то цикл завершается и выполняются следующие за ним операторы.

Циклы с условием. Часто бывает так, что необходимо повторить тело цикла, но заранее неизвестно, какое количество раз это надо сделать. В таких случаях количество повторений зависит от некоторого условия. Этот цикл реализуется с помощью инструкции Do. . . Loop.

Условие выхода из цикла можно поставить в начале, перед телом цикла или в конце, после тела цикла

Проверка условия выхода из цикла проводится с помощью ключевых слов While или Until. придают одному и тому же условию противоположный смысл. Ключевое слово While обеспечивает выполнение цикла до тех пор, пока выполняется условие, т. е. пока условие имеет значение истина. В этом случае условие является условием продолжения цикла. ложь, выполнение цикла закончится.

Ключевое слово Until обеспечивает выполнение цикла до тех пор, пока не выполняется условие, т. е. пока условие имеет значение ложь. В этом случае условие становится условием завершения цикла. Как только условие примет значение истина, выполнение цикла закончится.

2. Выполнение арифметических операций в двоичной системе счисления

Сложение. В основе сложения чисел в двоичной системе счисления лежит таблица сложения одноразрядных двоичных чисел (табл. 6).

Важно обратить внимание на то, что при сложении двух единиц производится перенос в старший разряд. Это происходит тогда, когда величина числа становится равной или большей основания системыисчисления.

Сложение многоразрядных двоичных чисел выполняется в соответствии с вышеприведенной таблицей сложения с учетом возможных переносов из младших разрядов в старшие. В качестве примера сложим в столбик двоичные числа ПОгИПз:

Вычитание. В основе вычитания двоичных чисел лежит таблица вычитания одноразрядных двоичных чисел (табл. 7). При вычитании из меньшего числа (0) большего (I) производится заем из старшего разряда. В таблице заем обозначен 1 с чертой.

Вычитание многоразрядных двоичных чисел реализуется в соответствии с этой таблицей с учетом возможных заемов в старших разрядах.

Умножение. В основе умножения лежит таблица умножения одноразрядных двоичных чисел (табл. 8).

Умножение многоразрядных двоичных чисел осуществляется в соответствии с этой таблицей умножения по обычной схеме, применяемой в десятичной системе счисления, с последовательным умножением множимого на очередную цифру множителя. Рассмотрим пример умножения двоичных чисел 110, и Па:

Билет є 17

1. Сложный алгоритм при разработке можно разбивать па отдельные алгоритмы, которые называются вспомогательными. Каждый вспомогательный алгоритм описывает решение какой-либо подзадачи. Как основной алгоритм, так и вспомогательные могут включать основные алгоритмические структуры: линейную, разветвляющуюся и циклическую.

В процессе создания программ на языке Visual Basic каждой форме, которая обеспечивает графический интерфейс программы, соответствует программный модуль. Программный модуль может включать в себя процедуры двух типов: событийные и общие.

Событийная процедура представляет собой подпрограмму, которая начинает выполняться после реализации определенного события. Программный модуль может содержать несколько событийных процедур. Каждая из таких процедур начинается с ключевого слова Sub (subroutine - подпрограмма) и заканчивается ключевыми словами End Sub.

Программный модуль с событийными процедурами. Разработаем приложение (проект), в котором имеется графический интерфейс на форме (Formi) и связанный с пей программный модуль, выводящий на форму рисунок простейшего домика.

Пусть домик будет состоять из стены (прямоугольника) и крыши (треугольника). Тогда в программном модуле, реализующем рисование домика на форме Forml, будет две событийные процедуры -

CTeHa_Click_и_КРЫША_Ciick.

Private Sub Стена_click()

Forml.Line (20, l00)-(220, 200), В

private Sub Kpbiuia_Click()

Forml.Line (20, 100)-(220, 100): Forml.Line (20, 100)-(120, 50): Forml.Line (120, 50)-(220, 100) End Sub

Для создания графического интерфейса программы разместим на форме Form1 две кнопки Стена и Крыша. Тогда после запуска программы на выполнение и щелчков по кнопкам Стена и Крыша будут реализованы соответствующие событийные процедуры и на форме появится рисунок домика.

Программный модуль с общей процедурой. Допустим, что теперь необходимо нарисовать несколько домиков. Если использовать событийные процедуры, то для каждого домика нужно будет писать свои процедуры, а это очень трудоемко. В случаях, когда в программном модуле можно выделить многократно повторяющиеся действия (процедуры), формируют общие процедуры.

Выполнение общих процедур не связывается с какими-либо событиями, они вызываются на выполнение с помощью оператора Call. Каждой общей процедуре дается уникальное название - имя процедуры и устанавливается список входных и выходных параметров процедуры.

Общая процедура представляет собой подпрограмму, которая начинает выполняться после ее вызова из другой процедуры.

Список входных параметров - это набор переменных, значение которых должно быть установлено до начала выполнения процедуры.

Список выходных параметров - это набор переменных, значение которых устанавливается после окончания выполнения процедура.

Тогда синтаксис вызова процедуры приобретает вид

Call ИмяПроцедурь1(СписокПараметров) SZ

Чтобы реализовать графический интерфейс, включим в проект еще одну форму (Form2). Для рисования домика целесообразно создать общую процедуру Домик(Х1, Х2, Yl, Y2 As Single), которая.имеет только список входных параметров (координат углов стены). Выходных параметров эта процедура не имеет.

Пусть событийная процедура Рисование Click () обеспечивает рисование трех домиков с различными значениями входных параметров, т. е. три раза вызывает общую процедуру Домик с различными значениями входных параметров.

Тогда связанный с формой (Form2) программный модуль будет включать в себя общую процедуру Домик (XI, Х2, Yl, Y2 As Single) и событийную процедуру Рисование Click ():

Private Sub Домик(Х1, Х2, Yl, Y2 As Single)

Form2.Line (XI, Y1)-(X2, Y2), В

Form2.Line (XI, Y1)-(X2, Yl)"

Form2.Line (X.I, Y1)-((X1 + Х2) / 2, Y1:V 2)

Form2.Line ((XI + Х2) / 2, Yl / 2)-

Private Sub Рисование_С11с1^()

Call Домик.<10, .50, 50,. J.00) , . ., /

Call Домик(60, 150, 150, 200)

Call Домик(160, 300, 80, 200)

Для построения графического интерфейса программы разместим на форме Form2 кнопку. Рисование. В этом случае после запуска программы на выполнение и щелчка по кнопке Рисование запустится событийная процедура Рисование_Click(), в процессе выполнения которой три раза будет вызвана общая процедура Домик с различными значениями параметров и на форме появятся рисунки трех разных домиков.

2. Информационное моделирование. Основные типы информационных моделей (табличные, иерархические, сетевые)

Табличные модели. Одним из наиболее часто используемых типов информационных моделей является таблица, которая состоит из строк и столбцов.

С помощью таблиц создаются информационные модели в различных предметных областях. Широко известно табличное представление математических функций, статистических данных, расписаний поездов и самолетов, уроков и т. д.

Табличные информационные модели проще всего формировать и исследовать на компьютере посредством электронных таблиц и систем управления базами данных.

Иерархические модели. Нас окружает множество различных объектов, каждый из которых обладает определенными свойствами. Однако некоторые группы объектов имеют одинаковые общие свойства, которые отличают их от объектов других групп.

Группа объектов, обладающих одинаковыми общими свойствами, называется"классолс объектов. Внутри класса могут быть выделены подклассы, объекты которых обладают некоторыми особенными свойствами, в свою очередь, подклассы можно делить на еще более мелкие группы и т. д. Такой процесс называется процессом классификации.

При классификации объектов часто применяются информационные модели, которые имеют иерархическую (древовидную) структуру. В иерархической информационной модели объекты распределены по уровням, причем элементы нижнего уровня входят в состав одного из элементов более высокого уровня. Например, весь животный мир рассматривается как иерархическая система (тип, класс, отряд, семейство, род, вид), для информатики характерна иерархическая файловая система и т. д.

На рисунке 22 изображена информационная модель, которая позволяет классифицировать современные компьютеры. Полученная информационная структура напоминает дерево, которое растет сверху вниз (именно поэтому такие информационные модели называют иногда древовидными). В структуре четко просматриваются три уровня: от первого, верхнего, имеющего один элемент Компьютеры, мы спускаемся до третьего, нижнего, имеющего три элемента Настольные, Портативные, Карманные.

Сетевые информационные модели. Сетевые информационные модели применяются для отражения систем со сложной структурой, в которых связь между элементами имеет произвольный характер.

Билет є 18

1. Основы языка программирования (алфавит, операторыФ типы данных и т. д.)

Языки программирования - это формальные языки, кодирующие алгоритмы в привычном для человека виде (в виде предложений). Язык программирования определяется заданием алфавита и точным описанием правил построения предложений (синтаксисом).

В алфавит языка могут входить буквы, цифры, математические символы, а также так называемые ключевые слова If (если). Then (тогда). Else (иначе) и др. Из исходных символов (алфавита) по правилам синтаксиса строятся предложения, обычно называемые операторами. Например, оператор условного перехода:

If A>B Then X=A+B Else X=A*B

Алгоритмические языки программирования, или их еще называют структурные языки программирования, представляют алгоритм в виде последовательности основных алгоритмических структур - линейной, ветвления, цикла.

Различные типы алгоритмических структур кодируются на языке программирования с помощью соответствующих операторов: ветвление - с помощью оператора If-Then-Else, цикл со счетчиком с помощью оператора For-Next и т. д. Операторы, кроме ключевых слов, иногда содержат арифметические, строковые и логические выражения.

Арифметические выражения могут включать в себя числа, переменные, знаки арифметических выражений, стандартные функции и круглые скобки. Например, арифметическое выражение, которое позволяет определить величину гипотенузы прямоугольного треугольника, будет записываться следующим образом:

В состав строковых выражений могут входить переменные строкового типа, строки (строками явля ются любые последовательности символов, заключенные в кавычки) и строковые функции. Например:

"инф"+М1с1 ("информатика"^ 3, 5) +strA.

Логические выражения, кроме логических переменных, нередко включают в себя числа, числовые или строковые переменные или выражения, которые сравниваются между собой посредством операции сравнения (>, <, =, >-, <= и т. д.).

Логическое выражение принимает лишь одно из двух значений: истина или ложь. Например: 5 > 3 - истинно; 2 Х 2 = 5 - ложно.

Над элементами логических выражений могут производиться логические операции, которые обозначаются следующим образом: логическое умножение - And, логическое сложение - Or и логическое отрицание - Mot.

В языках программирования используются различные структуры данных: переменная, массив и др. Переменные задаются именами, которые определяют области памяти, в которых хранятся их значения. Значениями переменных могут быть данные различных типов (целые или вещественные числа, строки, логические значения). Соответственно переменные бывают различных типов: целочисленные (А%=5), вещественные (А=3.14), строковые (А$="информатика" 1), логические (A=True).

Массивы являются набором однотипных переменных, объединенных одним именем. Массивы бывают одномерные, которые можно представить как одномерные таблицы, и двумерные, которые можно представить как двумерные таблицы. Массивы также могут быть различных типов: целочисленные, вещественные, строковые vn. р,.

Объектно-ориентированное программирование - это развитие технологии структурного программирования, однако оно имеет свои характерные черты. Основной единицей в объектно-ориентированном программировании выступает объект,который заключает в себе, инкапсулирует как описывающие его данные (свойства), так и средства обработки этих данных (методы).

Важное место в технологии объектно-ориентированного программирования занимает событие. В качестве событий можно рассматривать щелчок кнопкой мыши па объекте, нажатие определенной клавиши, открытие документа и т. д. Как реакция на события вызывается определенная процедура, которая может изменять свойства объекта, вызывать его методы и т. д.

В системах объектно-ориентированного программирования обычно используется графический интерфейс, который позволяет визуализировать процесс программирования. Появляется возможность создавать объекты, задавать им свойства и поведение с помощью мыши.

2. Основы языка разметки гипертекста (HTML)

Создание Web-сайтов реализуется с помощью языка разметки гипертекстовых документов HTML (Hyper Text Markup Language). Технология HTML состоит в том, что в обычный текстовый документ вставляют управляющие символы (тэги) и в результате получают Web-страницу. Браузер при загрузке Web-страницы представляет ее на экране в том виде, который задается тэгами.

Некоторые тэги имеют атрибуты, определяющие свойства тэга. Атрибут - это имя свойства, которое может принимать определенные значения.

Для создания Web-страниц служат простейшие текстовые редакторы, которые не включают в создаваемый документ управляющие символы форматирования текста. В качестве такого редактора в Windows можно ис-- пользовать стандартное приложение Блокнот.

HTML-код страницы помещается внутрь контейнера . Без этих тэгов браузер не в состоянии определить формат документа и правильно его интерпретировать. Web-страница разделяется на две логические части: заголовок и содержание.

Заголовок Web-страницы заключается в контейнер и содержит справочную информацию о странице, которая не отображается браузером, а также название документа.

Название Web-страницы содержится в контейнере и выводится в строке заголовка бра-узера. Назовем нашу Web-страницу УКомпьютерФ:

<Т1ТLЕ>Компьютер

Давайте знакомиться - Компьютер

С помощью HTML-тэгов определяют различные параметры форматирования текста. Заголовок страницы целесообразно выделить крупным шрифтом. Размер шрифта заголовка устанавливается тэгами от <Н1> (самый крупный) до <Н6> (самый мелкий).

Текст по умолчанию выравнивается по левому краю страницы. Однако заголовок обычно принято размещать по центру страницы (в данном случае - окна браузера). Сделать это нам позволяет атрибут ALIGN тэга заголовка:

<Н1 ALIGN="center">

В Web-сайтах могут размещаться изображения в трех графических форматах - GIF, JPG и PNG. Для вставки изображения используется тэг с атрибутом src="/kmh файла":

Пользователи иногда в целях экономии времени отключают в браузере загрузку графических изображений и читают только тексты. Поэтому, чтобы не терялся смысл и функциональность страницы, вместо рисунка следует выводить поясняющую надпись.

Для этого тэг имеет еще один атрибут ALT, значением которого является поясняющая надпись:

В результате мы получим HTML-код Web-страницы:

<Т1ТЬЕЖомпьютер

Давайте знакомиться -

Компьютер

1. Папки и файлы (тип файла, имя файла). Файловая система. Основные операции с файлами в операционной системе

Файл. Все программы и данные хранятся в долговременной (внешней) памяти компьютера в виде файлов. Файл - это определенное количество информации (программа или данные), имеющее имя и хранящееся в долговременной (внешней) памяти.

Имя файла состоит из двух частей, разделенных точкой: собственно имя файла и расширение, определяющее его тип (программа, данные и т. д.). Собственно имя файлу дает пользователь, а тип файла обычно задается программой автоматически при его создании.

В различных операционных системах существуют различные форматы имен файлов. В операционной системе MS-DOS собственно имя файла должно содержать не более восьми букв латинского алфавита и цифр, а расширение состоит из трех латинских букв, например:

proba.txt

В операционной системе Windows имя файла может иметь до 255 символов, причем допускается использование русского алфавита, например:

Единицы измерения информации.doc

Файловая система. На каждом носителе информации (гибком, жестком или лазерном диске) может храниться большое количество файлов. Порядок хранения файлов на диске определяется установленной файловой системой.

Для дисков с небольшим количеством файлов (до нескольких десятков) удобно применять одноуроене-вую файловую систему, когда каталог (оглавление диска) представляет собой линейную последовательность имен файлов.

Если на диске хранятся сотни и тысячи файлов, то для удобства поиска файлы организуются в многоуровневую иерархическую файловую систему, которая имеет УдревовиднуюФ структуру.

Начальный, корневой, каталог содержит вложенные каталоги 1-го уровня, в свою очередь, в каждом из них бывают вложенные каталоги 2-го уровня и т. д. Необходимо отметить, что в каталогах всех уровней могут храниться и файлы.

Операции над файлами. В процессе работы на компьютере над файлами чаще всего производятся следующие операции: копирование (копия файла помещается в другой каталог); перемещение (сам файл перемещается в другой каталог); удаление (запись о файле удаляется из каталога); переименование (изменяется имя файла).

Графическое представление файловой системы. Иерархическая файловая система MS-DOS, содержащая каталоги и файлы, представлена в операционной системе Windows с помощью графического интерфейса в форме иерархической системы папок и документов. Папка в Windows является аналогом каталога MS-DOS.

Однако иерархические структуры этих систем несколько различаются. В иерархической файловой системе MS-DOS вершиной иерархии объектов является корневой каталог диска, который можно сравнить со стволом дерева - на нем растут ветки (подкаталоги), а на ветках располагаются листья (файлы).

2. Логическое сложение. Таблица истинности

В алгебре логики объединение двух (или нескольких) высказываний с помощью союза УилиФ называется операцией логического сложения или дизъюнкцией.

Составное высказывание, образованное в результате логического сложения (дизъюнкции), истинно тогда, когда истинно хотя бы одно из входящих в него простых высказываний.

Операцию логического сложения (дизъюнкцию) принято обозначать либо знаком УvФ, либо знаком сложения У+Ф:

Мы записали формулу функции логического сложения, аргументами которой являются логические переменные А и В, принимающие значения истина (1) и ложь (0).

Функция логического сложения F также может принимать лишь два значения: истина (1) и ложь (0). Значение логической функции можно определить с помощью таблицы истинности данной функции, которая показывает, какие значения принимает логическая функция при всех возможных наборах ее аргументов (табл. 3).

По таблице истинности легко определить истинность составного высказывания, образованного с помощью операции логического сложения. Рассмот;

рим, например, составное высказывание У2 х 2 =° 4 или 3 х 3 = 10Ф. Первое простое высказывание истинно (А = 1), а второе высказывание ложно (В = 0); по таблице определяем, что логическая функция принимает значение истина (F = 1), т. е. данное составное

высказывание истинно.

Билет є 10

1. Правовая охрана программ для ЭВМ и баз данных впервые в полном объеме введена в Российской Федерации Законом УО правовой охране программ для электронных вычислительных машин и баз данныхФ, который вступил в силу 20 октября 1992 г. Предоставляемая настоящим законом правовая охрана распространяется на все виды программ для компьютеров (в том числе на операционные системы и программные комплексы), которые могут быть выражены на любом языке и в любой форме.Для признания и реализации авторского права на компьютерную программу не требуется ее регистрация в какой-либо организации. Авторское право на компьютерную программу возникает автоматически при ее создании. Для оповещения о своих правах разработчик программы может, начиная с первого выпуска в свет программы, использовать знак охраны авторского права, состоящий из трех элементов:

Буквы С в окружности или круглых скобках;

Наименования (имени) правообладателя;

Защита информации. Защита от нелегального копирования и использования. Программная защита для предотвращения копирования дистрибутивных дискет может состоять в применении нестандартного форматирования. Кроме того, на дискете или CD-ROM может быть размещен закодированный программный ключ, без которого программа становится непригодной к работе и который теряется при копировании. Аппаратную защиту от нелегального использования можно реализовать с помощью аппаратного ключа, который присоединяется обычно к параллельному порту компьютера. Защита доступа к компьютеру. Для защиты от несанкционированного доступа к данным, хранящимся на компьютере, служат пароли. Компьютер разрешает доступ к своим ресурсам только тем пользователям, которые зарегистрированы и ввели правильный пароль. Каждому конкретному пользователю может быть разрешен доступ только к определенным информационным ресурсам. При этом возможна регистрация всех попыток несанкционированного доступа. Защита дисков, папок и файлов. Каждый диск, папку и файл можно защитить от несанкционированного доступа: например, установить определенные права доступа (полный или только чтение), причем разные для различных пользователей. Защита информации в Интернете. На серверах в Интернете размещается различная важная информация: Web-сайты, файлы и т. д. Если компьютер подключен к Интернету, то в принципе любой пользователь, также подключенный к Интернету, может получить доступ к информационным ресурсам этого сервера. Он в состоянии изменить или заменить Web-страницу сайта, стереть или, наоборот, записать файл и т. д. Чтобы этого не происходило, доступ к информационным ресурсам сервера (его администрирование) производится по паролю. Если сервер имеет соединение с Интернетом и одновременно служит сервером локальной сети (Интранет-сервером), то возможно несанкционированное проникновение из Интернета в локальную сеть. Во избежание этого устанавливается программный или аппаратный барьер между Интернетом и Интранетом с помощью брандмауэра (firewall). Брандмауэр отслеживает передачу данных между сетями и предотвращает несанкционированный доступ.

2 . Основные логические устройства компьютера (сумматор, регистр)

Поскольку любая логическая операция может быть представлена в виде комбинации трех базовых операций (И, ИЛИ, НЕ), любые устройства компьютера, производящие обработку или хранение информации, могут быть собраны из базовых логических элементов как из кирпичиков.

Логический элемент И. На входы Л и В логического элемента последовательно подаются четыре пары сигналов различных значений, на выходе получается последовательность из четырех сигналов, значения которых определяются в соответствии с таблицей истинности операции логического умножения B(0,1,0,1) И A(0,0,1,1) = F(0,0,0,1)

Логический элемент ИЛИ. На входы А и В логического элемента последовательно подаются четыре пары сигналов различных значений, "на выходе получается последовательность из четырех сигналов, значения которых определяются в соответствии с таблицей истинности операции логического сложения A(0,0,1,1) ИЛИ B(0,1,0,1) = F(0,1,1,1)

Логический элемент НЕ . На вход А логического элемента последовательно подаются два сигнала, на выходе получается последовательность из двух сигналов, значения которых определяются в соответствии с таблицей истинности логического отрицания (рис. 13). А(0,1) НЕ = F(1,0)

Сумматор. В целях максимального упрощения работы компьютера все многообразие математических операций в процессоре сводится к сложению двоичных чисел. Поэтому главной частью процессора является сумматор, который обеспечивает такое сложение.

При сложении двоичных чисел образуется сумма в данном разряде, при этом возможен перенос в старший разряд. Обозначим слагаемые (А, В), перенос (Р) и сумму (S). Построим таблицу сложения одноразрядных двоичных чисел с учетом переноса в старший разряд (табл. 4). Слагаемые: перенос сумма

А = 0,0,1,1 Р=0,0,0,1 S=0,1,1,0

Из этой таблицы сразу видно, что перенос реализуется с помощью операции логического умножения: Р=А&В. Для определения суммы применим следующее выражение: S = (A v В)&(не (А&В))

Билет є 11

1. Рассмотрим процесс решения задачи на конкретном примере:

Тело брошено вертикально вверх с начальной скоростью с некоторой высоты. Определить его местоположение и скорость в заданный момент времени. На первом этапе обычно строится описательная информационная модель объекта или процесса. В нашем случае с использованием физических понятий создается идеализированная модель движения объекта. Из условия задачи можно сформулировать следующие основные предположения: 1) тело мало по сравнению с Землей, поэтому его можно считать материальной точкой; 2) скорость бросания тела мала, поэтому: - ускорение свободного падения считать постоянной величиной; - сопротивлением воздуха можно пренебречь. На втором этапе создается формализованная модель, т. е. описательная информационная модель записывается с помощью какого-либо формального языка. Из курса физики известно, что описанное выше движение является равноускоренным. При заданных начальной скорости (V0), начальной высоте (Но) и ускорений свободного падения (g - 9,8 м/с 2) зависимость скорости (V) и высоты (Н) от времени (t) можно описать следующими мат. Формулами:

V=Vo-g*t, Y=Hо+V*t – gt^2/2

На третьем этапе необходимо формализованную информационную модель преобразовать в компьютерную модель, т. е. выразить ее на понятном для компьютера языке. Существуют два принципиально различных пути построения компьютерной модели:

Создание алгоритма решения задачи и его кодирование на одном из языков программирования;

Формирование компьютерной модели с использованием одного из приложений (электронных таблиц, СУБД и т.д.). Для реализации первого пути надо построить алгоритм определения координаты тела в определенный момент времени и закодировать его на одном из языков программирования, например на языке Visual Basic. Второй путь требует создания компьютерной модели, которую можно исследовать в электронных таблицах. Для этого следует представить математическую модель в форме таблицы функции зависимости координаты от времени (таблицы функции Н = Но + V Х t - ((g t 2)/2)) и таблицы зависимости скорости тела от времени (V=Vo-g*t) Четвертый этап исследования информационной модели состоит в проведении компьютерного эксперимента. Если компьютерная модель существует в виде программы на одном из языков программирования, ее нужно запустить на выполнение и получить результаты. Если компьютерная модель исследуется в приложении, например в электронных таблицах, можно провести сортировку или поиск данных, построить диаграмму или график и т. д. На пятом этапе выполняется анализ полученных результатов и при необходимости корректировка исследуемой модели. Например, в нашей модели необходимо учесть, что не имеет физического смысла вычисление координаты тела после его падения на поверхность Земли. Таким образом, технология решения задач с помощью компьютера состоит из следующих этапов: построение описательной модели - формализация - построение компьютерной модели - компьютерный эксперимент - анализ результатов и корректировка модели.

2. Каждый объект имеет большое количество различных свойств. В процессе построения модели выделяются главные, наиболее существенные из них. Так, модель самолета должна иметь геометрическое подобие оригиналу, модель атома - правильно отражать физические взаимодействия, архитектурный макет города - ландшафт и т. д.

Модель - это некий новый объект, который отражает существенные особенности изучаемого объекта, явления или процесса. В разных науках объекты и процессы исследуются под разными углами зрения и строятся различные типы моделей. В физике изучаются процессы взаимодействия и движения объектов, в химии - их внутреннее строение, в биологии - поведение живых организмов и т. д. Возьмем в качестве примера человека; в разных науках он исследуется в рамках различных моделей. В механике его можно рассматривать как материальную точку, в химии - как объект, состоящий из различных химических веществ, в биологии - как систему, стремящуюся к самосохранению, и т. д. С другой стороны, разные объекты могут описываться одной моделью. Так, в механике различные материальные тела (от планеты до песчинки) часто рассматриваются как материальные точки. Один и тот же объект иногда имеет множество моделей, а разные объекты описываются одной моделью. Все модели можно разбить на два больших класса: модели предметные (материальные) я модели знаковые (информационные). Предметные модели воспроизводят геометрические, физические и другие свойства объектов в материальной форме. В процессе обучения широко используются такие модели: глобус (геогра-ф"ия), муляжи (биология), модели кристаллических решеток (химия) и др. Модели информационные представляют объекты и процессы в форме рисунков, схем, чертежей, таблиц, формул, текстов и т. д. В школе часто применяются такие модели: рисунок цветка (ботаника), карта (география), формула (физика), блок-схема алгоритма (информатика), периодическая система элементов Д. И. Менделеева (химия), уравнение (математика) и т. Д.

Билет є 12

1. Естественные языки служат для создания описательных информационных моделей. В истории науки известны многочисленные описательные информационные модели. Например, гелиоцентрическая модель мира, которую предложил Коперник, формулировалась следующим образом:

Земля вращается вокруг своей оси и вокруг Солнца;

Орбиты всех планет проходят вокруг Солнца.

С помощью формальных языков строятся формальные информационные модели (математические, логические и др.). Процесс построения информационных моделей с помощью формальных языков называется формализацией.

Одним из наиболее широко распространенных формальных языков является математический. Модели, сформированные с использованием математических понятий и формул, называются математическими моделями. Язык математики представляет собой совокупность формальных языков; о некоторых из них (алгебраическом, геометрическом) вы узнали в школе, с другими сможете познакомиться при дальнейшем обучении.

Язык алгебры позволяет формализовать функциональные зависимости между величинами. Так, Ньютон формализовал гелиоцентрическую систему мира Коперника, открыв законы механики и закон всемирного тяготения и записав их в виде алгебраических функциональных зависимостей. В школьном курсе физики рассматривается много разнообразных функциональных зависимостей, выраженных на языке алгебры, которые представляют собой математические модели изучаемых явлений или процессов. Язык алгебры логики (алгебры высказываний) дает возможность строить формальные логические модели. С помощью алгебры высказываний формализуются (записываются в виде логических выражений) простые и сложные высказывания, выраженные на естественном языке. Путем построения логических моделей удается решать логические задачи, создавать логические модели устройств компьютера (сумматора, триггера) и т. д. В процессе познания окружающего мира человечество постоянно прибегает к моделированию и формализации.

2. Мультимедиа-технология позволяет одновременно использовать различные способы представления информации: числа, текст, графику, анимацию, видео и звук.

Важной особенностью мультимедиа-технологии является ее интерактивность, т. е. то, что в диалоге с компьютером пользователю отводится активная роль. Графический интерфейс мультимедийных проектов обычно содержит различные управляющие элементы (кнопки, текстовые окна и т. д.).

В последнее время создано много мультимедийных программных продуктов: - энциклопедии по истории, искусству, географии, биологии и др.; - обучающие программы по иностранным языкам, физике, химии и т. д.

Мультимедийный компьютер, т. е. компьютер, который может работать с мультимедийвыми данными, должен иметь звуковую плату для воспроизведения и синтеза звука с подключенными акустическими колонками (наушниками) и микрофоном и дисковод CD-ROM, позволяющий хранить большие по объему мультимедийные данные. Одним из мультимедийных приложений являются компьютерные презентации. Компьютерная презентация представляет собой последовательность слайдов, содержащих мультимедийные объекты: числа, текст, графику, анимацию, видео и звук.

Публикации во Всемирной паутине реализуются в форме мультимедийных Web-сайтов, которые кроме текста могут включать в себя иллюстрации, анимацию, звуковую и видеоинформацию.

Билет є 13

1. Система состоит из объектов, которые называются элементами системы. Между элементами системы существуют различные связи и отношения. Например, компьютер является системой, состоящей из различных устройств, при этом устройства связаны между собой и аппаратно (физически подключены друг к другу) и функционально (между устройствами происходит обмен информацией). Важным признаком системы является ее целостное функционирование. Компьютер нормально работает до тех пор, пока в его состав входят и являются исправными основные устройства (процессор, память, системная плата и т. д.). Если удалить одно из них, например процессор, компьютер выйдет из строя, т. е. прекратит свое существование как система. Любая система находится в пространстве и времени. Состояние системы в каждый момент времени характеризуется ее структурой, т. е. составом, свойствами элементов, их отношениями и связями между собой. Так, структура Солнечной системы характеризуется составом входящих в нее объектов (Солнце, планеты и пр.), их свойствами (скажем, размерами) и взаимодействием (силами тяготения). Модели, описывающие состояние системы в определенный момент времени, называются статическими информационными моделями. В физике, например, статические информационные модели описывают простые механизмы, в биологии - классификацию животного мира, в химии - строение молекул и т;д. Состояние систем изменяется во времени, т. е. происходят процессы изменения и развития систем. Так, планеты движутся, меняется их положение относительно Солнца и друг друга; Солнце, как и любая другая звезда, развивается, меняется его химический состав, излучение и т. д. Модели, описывающие процессы изменения в развития систем, называются динамическими информационными моделями. В физике динамические информационные модели описывают движение тел, в биологии - развитие организмов или популяций животных, в химии - процессы прохождения химических реакций и т. д.

2. После объявления массива для его хранения отводится определенное место в памяти. Однако, чтобы начать работу с массивом, необходимо его предварительно заполнить, т. е. присвоить элементам массива определенные значения. Заполнение массива производится различными способами.

Первый способ состоит в том, что значения элементов массива вводятся пользователем с помощью функции ввода InputBox. Например, заполнить строковый массив strA(l) буквами русского алфавита можно с помощью следующей программы (событийной процедуры) на языке Visual Basic:

Dim strA(l To 33) As String I As Byte

Sub Conraandl_Click()

For I = 1 To 33

strA(I) = InputBox ("Введите букву", "Заполнение_

массива")

После запуска программы на выполнение и щелчка по кнопке Command! следует помещать на последовательно появляющихся панелях ввода в текстовом поле буквы алфавита.

Второй способ заполнения массива заключается в применении оператора присваивания. Заполним числовой массив bytA (I) целыми случайными числами в интервале от 1 до 100, используя функцию случайных чисел Rnd и функцию выделения целой части числа Int в цикле со счетчиком:

Dim bytA(l To 100), I As Byte

Sub Conimandl_CUck ()

For I = 1 To 1.00

bytA(I) = Int(Rnd * 100)

Составим программу поиска индекса элемента массива, значение которого совпадает с заданным. Возьмем символьный массив, содержащий алфавит, и определим номер заданной буквы по порядку алфавита. В первом цикле программы произведем заполнение строкового массива буквами русского алфавита. Затем введем искомую букву и во втором цикле сравним ее со всеми элементами массива. В случае совпадения присвоим переменной N значение индекса данного элемента. Выведем результат на печать.

Dim strAll To 33) As String I,N As Byte

Sub Commandl_Click() "заполнение массива

For I = 1 То 33

strA(I) = InputBox ("Введите следующую букву", __ "Заполнение массива")

"поиск элемента

strB = InputBox ("Введите искомую букву", "Поиск")

For I = 1 То 33

If strB = strA(I) Then N = I

Formi.Print "Номер искомого элемента "; strB; N

Билет є 14.

1. Алгоритм - это информационная модель, описывающая процесс преобразования объекта из начального состояния в конечное в форме последовательности понятных исполнителю команд, Рассмотрим информационную модель, описывающую процесс редактирования текста. Во-первых, должны быть определены начальное состояние объекта и его конечное состояние (цель преобразования). Следовательно, для текста требуется задать начальную последовательность символов и конечную последовательность, которую надо получить после редактирования. Во-вторых, чтобы изменить состояние объекта (значения его свойств), следует произвести над ним определенные действия (операции). Выполняет эти операции исполнитель. Исполнителем редактирования текста может быть человек, компьютер и др. В-третьих, процесс преобразования текста нужно разбить на отдельные операции, записанные в виде отдельных гсолюмо исполнителю. Каждый исполнитель обладает определенным набором, системой команд, понятных исполнителю. В процессе редактирования текста возможны различные операции: удаление, копирование, перемещение или замена его фрагментов. Исполнитель редактирования текста должен быть в состоянии выполнить эти операции. Разделение информационного процесса в алгоритме на отдельные команды является важным свойством алгоритма и называется дискретностью. Чтобы исполнитель мог выполнить преобразование объекта согласно алгоритму, он должен быть в состоянии понять и выполнить каждую команду. Это свойство алгоритма называется определенностью (или точностью). Необходимо, чтобы алгоритм обеспечивал преобразование объекта из начального состояния в конечное за конечное число шагов. Такое свойство алгоритма называется конечностью (или результативностью). Алгоритмы могут представлять процессы преобразования самых разных объектов. Широкое распространение получили вычислительные алгоритмы, которые описывают преобразование числовых данных. Само слово алгоритм происходит от algorithmi - латинской формы написания имени выдающегося математика IX в. аль-Хорезми, который сформулировал правила выполнения арифметических операций. Алгоритм позволяет формализовать выполнение информационного процесса. Если исполнителем является человек, то он может выполнять алгоритм формально, не вникая в содержание поставленной задачи, а только строго выполняя последовательность действий, предусмотренную алгоритмом.

2. Операционная система обеспечивает совместное функционирование всех устройств компьютера и предоставляет пользователю доступ к его ресурсам. Процесс работы компьютера в определенном смысле сводится к обмену файлами между устройствами. В операционной системе имеются программное модули, управляющие файловой системой. В состав операционной системы входит специальная программа - командный процессор, которая запрашивает у пользователя команды и выполняет их. Пользователь может дать, например, команду выполнения какой-либо операции над файлами (копирование, удаление, переименование), команду вывода документа на печать и т. д. Операционная система должна эти команды выполнить. К магистрали компьютера подключаются различные устройства (дисководы, монитор, клавиатура, мышь, принтер и др.). В состав операционной системы входят драйверы устройств - специальные программы, которые обеспечивают управление работой устройств и согласование информационного обмена с другими устройствами. Любому устройству соответствует свой драйвер.

Для упрощения работы пользователя в состав современных операционных систем, и в частности в состав Windows, входят программные модули, создающие графический пользовательский интерфейс. В операционных системах с графическим интерфейсом пользователь может вводить команды посредством мыши, тогда как в режиме командной строки необходимо вводить команды с помощью клавиатуры. Операционная система содержит также сервисные программы, или утилиты. Такие программы позволяют обслуживать диски (проверять, сжимать, де-фрагментировать и т. д.), выполнять операции с файлами (архивировать и т. д.), работать в компьютерных сетях и т. д. Для удобства пользователя в операционной системе обычно имеется и справочная система. Она предназначена для оперативного получения необходимой информации о функционировании как операционной системы в целом, так и о работе ее отдельных модулей. Файлы операционной системы хранятся во внешней, долговременной памяти (на жестком, гибком или лазерном диске). Однако программы могут выполняться, только если они находятся в оперативной памяти, поэтому файлы операционной системы необходимо загрузить в оперативную память. Диск (жесткий, гибкий или лазерный), на котором находятся файлы операционной системы и с которого производится ее загрузка, называется системным. После включения компьютера операционная система загружается с системного диска в оперативную память. Если системные диски в компьютере отсутствуют, на экране монитора появляется сообщение Non system disk и компьютер УзависаетФ,т. е. загрузка операционной системы прекращается и компьютер остается неработоспособным.

Билет є 15

1. В отличие от линейных алгоритмов, в которых команды выполняются последовательно одна за другой, в алгоритмические структуры ветвление входит условие, в зависимости от истинности условия выполняется та или иная последовательность команд (серий) Будем называть условием высказывание, которое может быть либо истинным, либо ложным. Условие, записанное на формальном языке, называется условным или логическим выражением. Условные выражения могут быть простыми и сложными. Простое условие включает в себя два числа, две переменных или два арифметических выражения, которые сравниваются между собой посредством операций сравнения (равно, больше, меньше у. д.). Например:

5>3 ,str A = УинформатикаФ

Сложное условие - это последовательность простых условий, объединенных между собой знаками логических операций. Например: 5>3 And strА="информатика".

Алгоритмическая структура ветвление может быть записана различными способами:

Графически, с помощью блок-схемы;

  • на языке программирования, например да языках Visual Basic и VBA

После первого ключевого слова It должно быть размещено условие, после второго ключевого слова Then - последовательность команд (серия 1), которую необходимо выполнять, если условие принимает значение истина. После третьего ключевого слова Bise размещается последовательность команд (серия 2), которую следует выполнять, если условие принимает значение ложь. Оператор условного перехода может быть записан в многострочной или в однострочной форме. В многострочной форме он записывается с помощью инструкции If. . . Then. . . Else. . . End If (Если... To... Иначе... Конец Если). В этом случае второе ключевое слово Then расположено на той же строчке, что и условие, а последовательность команд (серия 1) - на следующей. Третье ключевое слово Else находится на третьей строчке, а последовательность команд (серия 2)- на четвертой. Конец инструкции ветвления End If размещается на пятой строчке. В однострочной форме этот оператор записывается в соответствии с инструкцией If... Then... Else (Если... То... Иначе). Если инструкция не помещается на одной строке, она может быть разбита на несколько строк. Такое представление инструкций более наглядно для человека. Компьютер же должен знать, что разбитая на строки инструкция представляет единое целое. Это обеспечивает знак УпереносаФ, который задается символом подчеркивания после пробела. Третье ключевое слово Else в сокращенной форме инструкции может отсутствовать. (Необязательные части оператора записываются в квадратных скобках.) Тогда, в случае если условие ложно, выполнение оператора условного перехода заканчивается и выполняется следующая строка программы.

2. Представление информации может осуществляться с помощью знаковых систем. Каждая знаковая система строится на основе определенного алфавита и правил выполнения операций над знаками. Знаковыми системами являются естественные языки (русский, английский и т. д.), формальные языки (языки программирования, системы счисления и т. д.), биологические алфавиты (состояния нейрона в нервной системе, нуклеотиды, хранящие генетическую информацию в молекуле ДНК) и др. Знаки могут иметь различную физическую природу. Например, для письма используются знаки, представляющие собой изображения на бумаге или других носителях; в устной речи в качестве знаков выступают различные звуки (фонемы), а при обработке текста на компьютере знаки представляются в форме последовательностей электрических импульсов (компьютерных кодов). Кодирование, т. е. перевод информации из одной знаковой системы в другую, производится с помощью таблиц соответствия знаковых систем, которые устанавливают взаимно однозначное соответствие между знаками или группами знаков двух различных знаковых систем. Пример такой таблицы - таблица кодов ASCII (американский стандартный код обмена информацией), устанавливающая соответствие между интернациональными знаками алфавита и их числовыми компьютерными кодами. При хранении и передаче информации с помощью технических устройств целесообразно отвлечься от содержания информации и рассматривать ее как последовательность знаков (букв, цифр, кодов цвета точек изображения и т. д.). Исходя из вероятностного подхода к определению количества информации, набор символов знаковой системы (алфавит) можно рассматривать как различные возможные состояния (события). Тогда, если считать, что появление символов в сообщении равновероятно, по формуле можно рассчитать, какое количество информации несет каждый символ: N = 2 1 , где N - количество знаков в алфавите, I - количество информации. Информационная емкость знаков зависит от их числа в алфавите (мощности алфавита): чем больше их число, тем большее количество информации несет один знак.Так, информационная емкость буквы в русском алфавите, если не использовать букву УёФ, составляет:

32 = 2 1 , т. е. I = 5 бит.

В соответствии с алфавитным подходом количество информации^ которое содержит сообщение, закодированное с помощью знаковой системы, равно количеству информации, которое несет один знак, умноженному на число знаков в сообщении.

В данном разделе мы предлагаем вам для ознакомления Экзаменационные билеты по информатике , которые обязательно вам помогут хорошо подготовиться к сдаче любого экзамена по данному предмету. Используя данные материалы вы без особого труда сможете выполнить на отлично любую контрольную работу, сдать экзамен ОГЭ 2015.

К экзамену по информатике нужно готовиться плодотворно, потому что информатику и ИКТ начинают уже изучать чуть ли не с младших классов. Поэтому в данной категории подобрана литература за 4, 5, 6, 7, 8, 9, 10, 11 классы. Тесты, контрольные задания, компьютерные проекты, экзаменационные вопросы, самые полные издания типовых вариантов реальных заданий ЕГЭ 2014, 2013, 2012, 2011, 2010, 2009, ответы на вопросы ГИА, решения сложных задач, сборники экзаменационных заданий, универсальные раздаточные материалы и многое другое.

Информатика – это компьютерная наука, наука о способах получения, накопления, хранения, преобразования, передачи, защиты и использования информации. Она включает дисциплины, относящиеся к обработке информации в вычислительных машинах и вычислительных сетях: как абстрактные, вроде анализа алгоритмов, так и довольно конкретные, например, разработка языков программирования.

Так же трудность сдачи экзамена по информатики заключается в том, что обычно он состоит из нескольких этапов. Это тестирование, в котором собраны вопросы по всему курсу информатики. Устная часть, в которой идет обсуждение основных тем предмета. Это понятие информации, основных устройств компьютера, принципа работы компьютера и многое другое. И самый сложный этап - это построение алгоритмов и написание программ. Мы предлагаем вам билеты и ответы на билеты по информатике по всем темам и видам.

Подготовившись к экзамену не забудьте посетить раздел