Устройства, входящие в состав эвм. Лекция: общий состав и структура персональных эвм и вычислительных систем, их программное обеспечение

01.02.2019

1. Микропроцессор

2. Основная (материнская) плата и шина

4. Накопители на подвижном магнитном носителе

5. Накопители на гибких магнитных дисках

  • 6. Оптические диски
  • 7. Блоки расширения
  • Список литературы
1. Микропроцессор

Центром вычислительной системы является ее процессор. Это основное звено, или "мозг" компьютера. Именно процессор обладает способностью выполнять команды, составляющие компьютерную программу. Персональные компьютеры строятся на базе микропроцессоров, выполняемых в настоящее время на одном кристалле (чипе).

Внутреннее устройство процессоров непрерывно совершенствуется, и каждый следующий тратит на одну и ту же работу вдвое меньше тактов, чем предыдущий. В 8088 одна команда занимала 5-15 тактов, в Pentium - 0,5-1 (внутреннее дублирование схем позволяет ему выполнять несколько команд одновременно). Поэтому с точки зрения производительности микропроцессора, т. е. сколько он выполняет миллионов операций в секунду (MIPS - Million Instruction Per Second), каждое его следующее поколение даже при одной и той же тактовой частоте работает быстрее.

При переходе от одного поколения микропроцессоров к другому разработчики стремились сохранить набор основных команд, чтобы обеспечить преемственность и совместимость. При этом в формировании набора команд микропроцессора наметилось два направления. С одной стороны, программисту очень удобна машина, выполняющая одной командой какую-нибудь сложную операцию, например, команду извлечения квадратного корня. Но чем сложнее команды, тем сложнее схемы и дороже процессор. Поэтому программисты уже давно определили, какого минимального набора команд достаточно, чтобы программы из них было легко и удобно строить. А инженеры разработали схемы быстрого выполнения именно таких удобных команд. Программа, составленная из подобных простейших команд, - длиннее. Однако она исполняется настолько быстро, что в целом, все равно, ее исполнение занимает меньше времени. Кроме того, легче учесть взаимовлияние простых команд. Значит, проще оптимизировать программу, а затем эту оптимизацию автоматизировать.

С начала 1998 года Intel избрал новую политику - дробить рынок на части и для каждой делать свой продукт. Так наряду с производительными и дорогими Pentium II (с начала 1999 г. Pentium III) появилось семейство Celeron (рис.1-1), нацеленное на низшую ценовую категорию для конкуренции с микропроцессорами фирмы AMD.

В последние годы Intel развивает серию Pentium 4: 2000г.- Intel Pentium 4 (Willamette, Socket 423). Принципиально новый процессор с гиперконвейеризацией (hyperpipelining) - с конвейером, состоящим из 20 ступеней. Согласно заявлениям Intel, процессоры, основанные на данной технологии, позволяют добиться увеличения частоты примерно на 40 процентов относительно семейства P6 при одинаковом технологическом процессе. Применена 400 МГц системная шина (Quad-pumped), обеспечивающая пропускную способность в 3,2 ГБайта в секунду против 133 МГц шины с пропускной способностью 1,06 ГБайт у Pentium III. Кодовое имя: Willamette. Технические характеристики: технология производства - 0,18 мкм; тактовая частота - 1.3-2 ГГц; кэш первого уровня - 8 Кб; кэш второго уровня - 256 Кб (полноскоростной); процессор 64-разрядный; шина данных 64-разрядная (400 МГц); разъём Socket 423.

2. Основная (материнская) плата и шина

Для того чтобы микропроцессор мог работать, необходимы некоторые вспомогательные компоненты. Когда данные передаются внутри компьютерной системы, они проходят по общему каналу, к которому имеют доступ все компоненты системы. Этот путь получил название шины данных. Необходимо отметить, что понятие «шина данных» имеет общее значение, конкретно же и микропроцессор имеет свою шину данных и оперативная память. Когда нет специального уточнения, то речь идет, как правило, об общей шине, или иначе шине ввода-вывода.

Эта шина формируется на сложной многослойной печатной плате - основной, или иначе, материнской (motherboard рис. 1-2).

Системная шина представляет собой совокупность сигнальных линий, объединённых по их назначению (данные, адреса, управление). Основной функцией системной шины является передача информации между базовым микропроцессором и остальными электронными компонентами компьютера. По этой шине так же осуществляется не только передача информации, но и адресация устройств, а также обмен специальными служебными сигналами.

Концепция шины представляет собой один из наиболее совершенных методов унификации при разработке компьютеров. Вместо того чтобы пытаться соединять все элементы компьютерной системы между собой специальными соединениями, разработчики компьютеров ограничили пересылку данных одной общей шиной.

Эта идея чрезвычайно упростила конструкцию компьютеров и существенно увеличила ее гибкость. Чтобы добавить новый компонент, не требуется выполнять множество различных соединений, достаточно присоединить его к шине через специальный разъем (Slot). Чтобы упорядочить передачу информации по шине используется контроллер шины.

3. Память

Одним из основных элементов компьютера, позволяющим ему нормально функционировать, является память. Внутренняя память компьютера (оперативная память и кэш-память) - это место хранения информации, с которой он работает. Она является временным рабочим пространством. Информация во внутренней памяти не сохраняется при выключении питания, на диске же или дискете может храниться годами без потребления питания. В постоянной памяти (ROM) персонального компьютера записан набор программ базовой системы ввода-вывода (BIOS). Эта память энергонезависима и BIOS всегда готова к чтению при включении питания компьютера.

Основная (оперативная) память (RAM - Random Access Memory - память с произвольным доступом) компьютера отличается от прочих устройств памяти, прежде всего тем, что к любому ее месту можно обратиться одинаково быстро, даже если делать это в случайном (произвольном) порядке (random access).

Большинство старых программ, работающих под управлением DOS, укладываются в сотни килобайт - ведь DOS адресует только 640 Кбайт. Современные операционные системы многозадачные. Они позволяют нескольким программам действовать одновременно, а главное, взаимодействовать между собой. Поэтому для их работы требуется значительный объем оперативной памяти, например, для операционной системы Windows ME - 64 Мбайт, для Windows XP - 128 Мбайт. Причем эти требования минимальные. Для приемлемой скорости работы с наиболее часто используемыми комбинациями программ эти цифры надо хотя бы удвоить или лучше учетверить.

Физически оперативная память устанавливается в виде модулей SIMM (Single In-line Memory Modules) или DIMM (Double In-line Memory Modules) в специальные гнезда на материнской плате (рис. 1-3).

На системной (материнской) плате модули памяти организуются в банки памяти. В компьютерах последних лет разъемы для модулей SIMM полностью исключены, так что используются только DIMM модули объемом 64 МВ и выше. Оперативная память подвержена многим помехам. Поэтому обычно к каждому байту добавляют девятый бит - для контроля на четность. Существуют также способы автоматического восстановления информации при сбоях. Однако они требуют большей избыточности памяти и соответственно повышают ее цену. Поэтому память с расширенным корректирующим кодом (ЕСС - Extended Correction Code) используют, прежде всего, в мощных машинах, решающих серьезные задачи.

4. Накопители на подвижном магнитном носителе

Для первых персональных компьютеров разработали винчестеры диаметром 5,25", затем для портативных компьютеров - 3,5"; а в ноутбуки уже ставят накопители диаметром 2,5" и даже 1,8". Винчестеры размером 5,25" теперь не используются даже в настольных компьютерах, чаще устанавливаются 3.5" (рис. 1-4). Устройства управления винчестерами - контроллеры - раньше размещались на отдельных печатных платах. Теперь почти все нужные схемы встраивают в корпус винчестера - Integrated Drive Eiectronic (IDE), а немногие оставшиеся компоненты обычно включены в motherboard (или на плате расширения, называемой MultiCard) и подключаются через плоский специальный многожильный кабель.

В 2003 году появились первые экземпляры контроллеров Serial ATA на популярных материнских платах. Прежде всего, кабель у нового интерфейса принципиально отличается от прежнего плоского и широкого (40- или 80-жильного), у него количество сигнальных проводов сокращено до четырех (есть дополнительная «земля»), и до метра увеличена допустимая длина. Это способствует более компактной упаковке и лучшим условиям охлаждения внутри корпуса компьютера, удешевляет конструкцию. Тут компактные семиконтактные разъемы соединяются узким уплощенным кабелем шириной примерно 8 мм и толщиной около 2 мм. Внутри кабеля Serial ATA находятся две пары сигнальных проводов (одна пара на прием, другая - на передачу), отделенных тремя жилами общего провода («земли»). На разъеме, расположенном на дисках и материнских платах, три «земляных» контакта выступают чуть дальше сигнальных контактов, чтобы облегчить «горячее» подключение (рис. 1-5).

5. Накопители на гибких магнитных дисках

Гибкий (floppy) диск (дискета) - круг лавсановой пленки с магнитным покрытием, помещенный в защитный конверт еще недавно был единственным сменным носителем информации в компьютере, ведь первые PC (до РС ХТ) других дисков не имели. Первые дискеты для РС были размера 5,25", портативные РС потребовали формата 3,5", однако позднее они стали применяться на всех компьютерах, и вытеснили дискеты 5,25".

Информация на дискету записывается с двух сторон, с каждой из которых располагается 80 дорожек. Головки на верхней и нижней сторонах дискеты смещены друг относительно друга, чтобы они не мешали подтягивать (для уменьшения зазора) поверхность дискеты к головкам за счет аэродинамических эффектов при вращении носителя. Также в зависимости от формата каждая сторона разбивается на определенное количество секторов.

В дисководах (рис. 1-6) для гибких дисков (дискет) головки записи/чтения при его работе непосредственно касаются поверхности дискеты, поэтому скорость вращения значительно ниже (300 или 360 оборотов в минуту) и дискеты быстрее выходят из строя. Для уменьшения трения дискеты покрывают защитным слоем тефлона (фр. тефаль) - материала с очень низким коэффициентом трения. Они дороже раза в полтора, но зато служат гораздо дольше.

6. Оптические диски

В эту группу объединены носители, которые для считывания информации используется чисто оптический принцип, когда 1 или 0 распознаются по различной фазе отраженного лазерного луча от поверхности с различным состоянием, созданным при записи данных.

WORM - накопители (Write Once Read Many - одна запись много считываний) представляют собой диск, помещенный обычно в прочный картридж 5,25", по конструкции подобный дискете 3,5" . Запись информации сводится к тому, что на светлой поверхности диска там, где это нужно, выжигаются лазерным лучом микроскопические темные пятнышки. Емкость накопителя составляет от 650 Мбайт до 1,3 Гбайт.

Для записи поверхность магнитооптического диска прогревают лазерным лучом до температуры легкого перемагничивания (точки Кюри). Обычно сначала при постоянном нагреве намагничивают записываемый участок в одном направлении, а потом импульсным нагревом перемагничивают нужные точки. Это долго, требуется два оборота диска. Новейшие устройства способны создавать быстропеременное магнитное поле нужной силы и записывают за один оборот. Так что и по скорости записи магнитооптика догоняет винчестер. При этом, как и винчестер позволяют многократно перезаписывать информацию и подобно дискете заменять носитель. Такое сочетание свойств объясняет большую популярность МО в мире.

В конце 70-х годов компания Philips выпустила первые компакт-диски (CD - Compact-Disk). Вначале они предназначались для 14-разрядной звуковой записи продолжительностью звучания 60 минут. Диаметр тех дисков был несколько меньше диаметра современных компакт-дисков, который равен 12 см (4,75 дюйма). Вскоре Philips обменялась патентами с Sony, в результате чего был издан совместный стандарт. Стандарт определял характеристики аудиодисков (CD-DA - Compact-Disk Digital Audio - компакт-диск для цифровой аудиозаписи). Запись звука стала 16-разрядной, а продолжительность звучания не менее 72 минут (говорят, что длительность определялась возможностью записи на один диск Девятой симфонии Бетховена). При непрерывном чтении и воспроизведении музыки для этого оказалось достаточно скорости чтения 150 Кбайт/с. Теперь приводы CD-ROM работают с существенно большей кратностью чтения до 56Х (рис. 1-7).

Впоследствии были выпущены стандарты для других типов компакт-дисков. Компании Philips и Sony в декабре 1994 года объявили, что разработан проект стандарта, названного MMCD (MultiMedia Compact Disk). Диск с однослойной записью мог иметь емкость 3,7 Гбайт. При помощи компании ЗМ была разработана технология 2-cлoйной записи для проекта MMCD. В этом случае емкость диска удваивалась. Такие параметры уже могли обеспечить проигрывание цифрового видео в формате MPEG-2 (Motion Picture Experts Group) в течение 135 и 270 минут соответственно.

7. Блоки расширения

Блоки (платы) расширения или карты (Card), как их иногда называют, могут использоваться для обслуживания устройств, подключаемых к IBM PC. Они могут использоваться для подключения дополнительных устройств (адаптеров дисплея, контроллера дисков и т.п.). Если оборудование умещается на одной плате, то его можно разместить внутри корпуса системного блока. Если же оно не помещается в корпус, например, в случае с монитором, то внутри размещается только плата управления или согласования, соединяющаяся с оборудованием с помощью кабеля, который можно подключить через соединитель (Connector), расположенный на задней стенке корпуса (точнее, соединитель располагается обычно непосредственно на торце платы). Каждой плате расширения, устанавливаемой в слот (Slot) на материнской плате, соответствует специальное отверстие в задней стенке корпуса, закрытое заглушкой, если оно не используется. При установке платы ее торец вместо заглушки становится элементом задней стенки компьютера.

Первой приобрела популярность, достаточную для массового выпуска, плата Sound Blaster. Сегодня почти все звуковые платы обеспечивают совместимость с нею (рис. 1-8). Современные звуковые платы могут не просто воспроизвести объемный звук, но и объемный управляемый в зависимости от изображения на экране.

В персональных компьютерах видео платы (VideoCard), прежде всего, предназначались для согласования с монитором (видеоадаптеры), затем вывода на экран графики понадобились ускорители (видео акселераторы).

РС начинают загрузку с режима VGA - Video Graphic Array (640x480 пикселей - picture element, pixel). Режим SuperVGA, формат 800 х 600 пикселей нужен, чтобы при оформлении одиночного документа было доступно все богатство шрифтов системы Windows. Для верстки журналов и газет требуется, хотя бы 1024 х 768, а лучше - 1280 х 1024 пикселей. Иначе не разглядишь, как стыкуются отдельные фрагменты. Рисование идет быстро на экране с разрешением 1280 х 1024 - 1600 х 1200, с меньшим форматом придется постоянно переключаться на крупномасштабный просмотр фрагментов и т.д.

Если умножить шаг (расстояние между центрами пикселей) на требуемое число пикселей в строке, а затем помножить на 1,25 (отношение длины диагонали экрана к длине его строки), то получится длина в миллиметрах диагонали нужного монитора. (В дюймах - поделите на 25,4). Так, что для современных персональных компьютеров требуется монитор с размером по диагонали не менее 15 (лучше 17) дюймов (рис. 1-9).

Список литературы 1. Кузнецов Е. Ю., Осман В. М. Персональные компьютеры и программируемые микрокалькуляторы: Учеб. пособие для ВТУЗов - М.: Высш. шк. -1991 г. 160 с.2. Борзенко А.В. IBM PC: устройство, ремонт, модернизация. - М., Компьютер Пресс, 1996.- 344 с.3. Ахметов А. Н., Борзенко А. В. Современный персональный компьютер. - М.: Компьютер Пресс, 2003.-317 с.4. Компьютерра//М.: ООО "Пресса" - 2001.5. Компьютер Пресс//М.: Компьютер Пресс - 2002.

1. Микропроцессор

2. Основная (материнская) плата и шина

4. Накопители на подвижном магнитном носителе

5. Накопители на гибких магнитных дисках

  • 6. Оптические диски
  • 7. Блоки расширения
  • Список литературы

1. Микропроцессор

Центром вычислительной системы является ее процессор. Это основное звено, или "мозг" компьютера. Именно процессор обладает способностью выполнять команды, составляющие компьютерную программу. Персональные компьютеры строятся на базе микропроцессоров, выполняемых в настоящее время на одном кристалле (чипе).

Внутреннее устройство процессоров непрерывно совершенствуется, и каждый следующий тратит на одну и ту же работу вдвое меньше тактов, чем предыдущий. В 8088 одна команда занимала 5-15 тактов, в Pentium - 0,5-1 (внутреннее дублирование схем позволяет ему выполнять несколько команд одновременно). Поэтому с точки зрения производительности микропроцессора, т. е. сколько он выполняет миллионов операций в секунду (MIPS - Million Instruction Per Second), каждое его следующее поколение даже при одной и той же тактовой частоте работает быстрее.

При переходе от одного поколения микропроцессоров к другому разработчики стремились сохранить набор основных команд, чтобы обеспечить преемственность и совместимость. При этом в формировании набора команд микропроцессора наметилось два направления. С одной стороны, программисту очень удобна машина, выполняющая одной командой какую-нибудь сложную операцию, например, команду извлечения квадратного корня. Но чем сложнее команды, тем сложнее схемы и дороже процессор. Поэтому программисты уже давно определили, какого минимального набора команд достаточно, чтобы программы из них было легко и удобно строить. А инженеры разработали схемы быстрого выполнения именно таких удобных команд. Программа, составленная из подобных простейших команд, - длиннее. Однако она исполняется настолько быстро, что в целом, все равно, ее исполнение занимает меньше времени. Кроме того, легче учесть взаимовлияние простых команд. Значит, проще оптимизировать программу, а затем эту оптимизацию автоматизировать.

С начала 1998 года Intel избрал новую политику - дробить рынок на части и для каждой делать свой продукт. Так наряду с производительными и дорогими Pentium II (с начала 1999 г. Pentium III) появилось семейство Celeron (рис.1-1), нацеленное на низшую ценовую категорию для конкуренции с микропроцессорами фирмы AMD.

В последние годы Intel развивает серию Pentium 4: 2000г.- Intel Pentium 4 (Willamette, Socket 423). Принципиально новый процессор с гиперконвейеризацией (hyperpipelining) - с конвейером, состоящим из 20 ступеней. Согласно заявлениям Intel, процессоры, основанные на данной технологии, позволяют добиться увеличения частоты примерно на 40 процентов относительно семейства P6 при одинаковом технологическом процессе. Применена 400 МГц системная шина (Quad-pumped), обеспечивающая пропускную способность в 3,2 ГБайта в секунду против 133 МГц шины с пропускной способностью 1,06 ГБайт у Pentium III. Кодовое имя: Willamette. Технические характеристики: технология производства - 0,18 мкм; тактовая частота - 1.3-2 ГГц; кэш первого уровня - 8 Кб; кэш второго уровня - 256 Кб (полноскоростной); процессор 64-разрядный; шина данных 64-разрядная (400 МГц); разъём Socket 423.

2. Основная (материнская) плата и шина

Для того чтобы микропроцессор мог работать, необходимы некоторые вспомогательные компоненты. Когда данные передаются внутри компьютерной системы, они проходят по общему каналу, к которому имеют доступ все компоненты системы. Этот путь получил название шины данных. Необходимо отметить, что понятие «шина данных» имеет общее значение, конкретно же и микропроцессор имеет свою шину данных и оперативная память. Когда нет специального уточнения, то речь идет, как правило, об общей шине, или иначе шине ввода-вывода.

Эта шина формируется на сложной многослойной печатной плате - основной, или иначе, материнской (motherboard рис. 1-2).

Системная шина представляет собой совокупность сигнальных линий, объединённых по их назначению (данные, адреса, управление). Основной функцией системной шины является передача информации между базовым микропроцессором и остальными электронными компонентами компьютера. По этой шине так же осуществляется не только передача информации, но и адресация устройств, а также обмен специальными служебными сигналами.

Концепция шины представляет собой один из наиболее совершенных методов унификации при разработке компьютеров. Вместо того чтобы пытаться соединять все элементы компьютерной системы между собой специальными соединениями, разработчики компьютеров ограничили пересылку данных одной общей шиной.

Эта идея чрезвычайно упростила конструкцию компьютеров и существенно увеличила ее гибкость. Чтобы добавить новый компонент, не требуется выполнять множество различных соединений, достаточно присоединить его к шине через специальный разъем (Slot). Чтобы упорядочить передачу информации по шине используется контроллер шины.

3. Память

Одним из основных элементов компьютера, позволяющим ему нормально функционировать, является память. Внутренняя память компьютера (оперативная память и кэш-память) - это место хранения информации, с которой он работает. Она является временным рабочим пространством. Информация во внутренней памяти не сохраняется при выключении питания, на диске же или дискете может храниться годами без потребления питания. В постоянной памяти (ROM) персонального компьютера записан набор программ базовой системы ввода-вывода (BIOS). Эта память энергонезависима и BIOS всегда готова к чтению при включении питания компьютера.

Основная (оперативная) память (RAM - Random Access Memory - память с произвольным доступом) компьютера отличается от прочих устройств памяти, прежде всего тем, что к любому ее месту можно обратиться одинаково быстро, даже если делать это в случайном (произвольном) порядке (random access).

Большинство старых программ, работающих под управлением DOS, укладываются в сотни килобайт - ведь DOS адресует только 640 Кбайт. Современные операционные системы многозадачные. Они позволяют нескольким программам действовать одновременно, а главное, взаимодействовать между собой. Поэтому для их работы требуется значительный объем оперативной памяти, например, для операционной системы Windows ME - 64 Мбайт, для Windows XP - 128 Мбайт. Причем эти требования минимальные. Для приемлемой скорости работы с наиболее часто используемыми комбинациями программ эти цифры надо хотя бы удвоить или лучше учетверить.

Физически оперативная память устанавливается в виде модулей SIMM (Single In-line Memory Modules) или DIMM (Double In-line Memory Modules) в специальные гнезда на материнской плате (рис. 1-3).

На системной (материнской) плате модули памяти организуются в банки памяти. В компьютерах последних лет разъемы для модулей SIMM полностью исключены, так что используются только DIMM модули объемом 64 МВ и выше. Оперативная память подвержена многим помехам. Поэтому обычно к каждому байту добавляют девятый бит - для контроля на четность. Существуют также способы автоматического восстановления информации при сбоях. Однако они требуют большей избыточности памяти и соответственно повышают ее цену. Поэтому память с расширенным корректирующим кодом (ЕСС - Extended Correction Code) используют, прежде всего, в мощных машинах, решающих серьезные задачи.

4. Накопители на подвижном магнитном носителе

Для первых персональных компьютеров разработали винчестеры диаметром 5,25", затем для портативных компьютеров - 3,5"; а в ноутбуки уже ставят накопители диаметром 2,5" и даже 1,8". Винчестеры размером 5,25" теперь не используются даже в настольных компьютерах, чаще устанавливаются 3.5" (рис. 1-4). Устройства управления винчестерами - контроллеры - раньше размещались на отдельных печатных платах. Теперь почти все нужные схемы встраивают в корпус винчестера - Integrated Drive Eiectronic (IDE), а немногие оставшиеся компоненты обычно включены в motherboard (или на плате расширения, называемой MultiCard) и подключаются через плоский специальный многожильный кабель.

В 2003 году появились первые экземпляры контроллеров Serial ATA на популярных материнских платах. Прежде всего, кабель у нового интерфейса принципиально отличается от прежнего плоского и широкого (40- или 80-жильного), у него количество сигнальных проводов сокращено до четырех (есть дополнительная «земля»), и до метра увеличена допустимая длина. Это способствует более компактной упаковке и лучшим условиям охлаждения внутри корпуса компьютера, удешевляет конструкцию. Тут компактные семиконтактные разъемы соединяются узким уплощенным кабелем шириной примерно 8 мм и толщиной около 2 мм. Внутри кабеля Serial ATA находятся две пары сигнальных проводов (одна пара на прием, другая - на передачу), отделенных тремя жилами общего провода («земли»). На разъеме, расположенном на дисках и материнских платах, три «земляных» контакта выступают чуть дальше сигнальных контактов, чтобы облегчить «горячее» подключение (рис. 1-5).

5. Накопители на гибких магнитных дисках

Гибкий (floppy) диск (дискета) - круг лавсановой пленки с магнитным покрытием, помещенный в защитный конверт еще недавно был единственным сменным носителем информации в компьютере, ведь первые PC (до РС ХТ) других дисков не имели. Первые дискеты для РС были размера 5,25", портативные РС потребовали формата 3,5", однако позднее они стали применяться на всех компьютерах, и вытеснили дискеты 5,25".

Информация на дискету записывается с двух сторон, с каждой из которых располагается 80 дорожек. Головки на верхней и нижней сторонах дискеты смещены друг относительно друга, чтобы они не мешали подтягивать (для уменьшения зазора) поверхность дискеты к головкам за счет аэродинамических эффектов при вращении носителя. Также в зависимости от формата каждая сторона разбивается на определенное количество секторов.

В дисководах (рис. 1-6) для гибких дисков (дискет) головки записи/чтения при его работе непосредственно касаются поверхности дискеты, поэтому скорость вращения значительно ниже (300 или 360 оборотов в минуту) и дискеты быстрее выходят из строя. Для уменьшения трения дискеты покрывают защитным слоем тефлона (фр. тефаль) - материала с очень низким коэффициентом трения. Они дороже раза в полтора, но зато служат гораздо дольше.

6. Оптические диски

В эту группу объединены носители, которые для считывания информации используется чисто оптический принцип, когда 1 или 0 распознаются по различной фазе отраженного лазерного луча от поверхности с различным состоянием, созданным при записи данных.

WORM - накопители (Write Once Read Many - одна запись много считываний) представляют собой диск, помещенный обычно в прочный картридж 5,25", по конструкции подобный дискете 3,5" . Запись информации сводится к тому, что на светлой поверхности диска там, где это нужно, выжигаются лазерным лучом микроскопические темные пятнышки. Емкость накопителя составляет от 650 Мбайт до 1,3 Гбайт.

Для записи поверхность магнитооптического диска прогревают лазерным лучом до температуры легкого перемагничивания (точки Кюри). Обычно сначала при постоянном нагреве намагничивают записываемый участок в одном направлении, а потом импульсным нагревом перемагничивают нужные точки. Это долго, требуется два оборота диска. Новейшие устройства способны создавать быстропеременное магнитное поле нужной силы и записывают за один оборот. Так что и по скорости записи магнитооптика догоняет винчестер. При этом, как и винчестер позволяют многократно перезаписывать информацию и подобно дискете заменять носитель. Такое сочетание свойств объясняет большую популярность МО в мире.

В конце 70-х годов компания Philips выпустила первые компакт-диски (CD - Compact-Disk). Вначале они предназначались для 14-разрядной звуковой записи продолжительностью звучания 60 минут. Диаметр тех дисков был несколько меньше диаметра современных компакт-дисков, который равен 12 см (4,75 дюйма). Вскоре Philips обменялась патентами с Sony, в результате чего был издан совместный стандарт. Стандарт определял характеристики аудиодисков (CD-DA - Compact-Disk Digital Audio - компакт-диск для цифровой аудиозаписи). Запись звука стала 16-разрядной, а продолжительность звучания не менее 72 минут (говорят, что длительность определялась возможностью записи на один диск Девятой симфонии Бетховена). При непрерывном чтении и воспроизведении музыки для этого оказалось достаточно скорости чтения 150 Кбайт/с. Теперь приводы CD-ROM работают с существенно большей кратностью чтения до 56Х (рис. 1-7).

Впоследствии были выпущены стандарты для других типов компакт-дисков. Компании Philips и Sony в декабре 1994 года объявили, что разработан проект стандарта, названного MMCD (MultiMedia Compact Disk). Диск с однослойной записью мог иметь емкость 3,7 Гбайт. При помощи компании ЗМ была разработана технология 2-cлoйной записи для проекта MMCD. В этом случае емкость диска удваивалась. Такие параметры уже могли обеспечить проигрывание цифрового видео в формате MPEG-2 (Motion Picture Experts Group) в течение 135 и 270 минут соответственно.

7. Блоки расширения

Блоки (платы) расширения или карты (Card), как их иногда называют, могут использоваться для обслуживания устройств, подключаемых к IBM PC. Они могут использоваться для подключения дополнительных устройств (адаптеров дисплея, контроллера дисков и т.п.). Если оборудование умещается на одной плате, то его можно разместить внутри корпуса системного блока. Если же оно не помещается в корпус, например, в случае с монитором, то внутри размещается только плата управления или согласования, соединяющаяся с оборудованием с помощью кабеля, который можно подключить через соединитель (Connector), расположенный на задней стенке корпуса (точнее, соединитель располагается обычно непосредственно на торце платы). Каждой плате расширения, устанавливаемой в слот (Slot) на материнской плате, соответствует специальное отверстие в задней стенке корпуса, закрытое заглушкой, если оно не используется. При установке платы ее торец вместо заглушки становится элементом задней стенки компьютера.

Первой приобрела популярность, достаточную для массового выпуска, плата Sound Blaster. Сегодня почти все звуковые платы обеспечивают совместимость с нею (рис. 1-8). Современные звуковые платы могут не просто воспроизвести объемный звук, но и объемный управляемый в зависимости от изображения на экране.

В персональных компьютерах видео платы (VideoCard), прежде всего, предназначались для согласования с монитором (видеоадаптеры), затем вывода на экран графики понадобились ускорители (видео акселераторы).

РС начинают загрузку с режима VGA - Video Graphic Array (640x480 пикселей - picture element, pixel). Режим SuperVGA, формат 800 х 600 пикселей нужен, чтобы при оформлении одиночного документа было доступно все богатство шрифтов системы Windows. Для верстки журналов и газет требуется, хотя бы 1024 х 768, а лучше - 1280 х 1024 пикселей. Иначе не разглядишь, как стыкуются отдельные фрагменты. Рисование идет быстро на экране с разрешением 1280 х 1024 - 1600 х 1200, с меньшим форматом придется постоянно переключаться на крупномасштабный просмотр фрагментов и т.д.

Если умножить шаг (расстояние между центрами пикселей) на требуемое число пикселей в строке, а затем помножить на 1,25 (отношение длины диагонали экрана к длине его строки), то получится длина в миллиметрах диагонали нужного монитора. (В дюймах - поделите на 25,4). Так, что для современных персональных компьютеров требуется монитор с размером по диагонали не менее 15 (лучше 17) дюймов (рис. 1-9).

Образовательные результаты З1, З2

План:

1.Классификация ЭВМ.

2.Классификация ПЭВМ.

3.Основные виды и принципы архитектуры ЭВМ.

4.Состав и назначение устройств персонального компьютера (ПК).

Классификация ЭВМ

Электронная вычислительная машина, компьютер – комплекс технических средств, предназначенных для автоматической обработки информации в процессе решения вычислительных и информационных задач.
Классификация ЭВМ по принципу действия

Цифровые вычислительные машины (ЦВМ) – вычислительные машины дискретного действия, работают с информацией, представленной в дискретной (цифровой) форме. ЦВМ отличаются высокой точностью вычисления и удобством хранения информации.

Аналоговые вычислительные машины (АВМ) – вычислительные машины непрерывного действия, работают с информацией, представленной в непрерывной (аналоговой) форме, т.е. в виде непрерывного рядя значений какой-либо физической величины. АВМ просты и удобны в эксплуатации, характеризуются высоким быстродействием и относительно высокой тонностью.

Гибридные вычислительные машины (ГВМ) – вычислительные машины комбинированного действия, работают с информацией, представленной в цифровой и аналоговой форме. Они совмещают преимущества ЦВМ и ГВМ.

Классификация ЭВМ по этапам создания

1-е поколение, 50-е годы. ЭВМ на электронных вакуумных лампах.

2-е поколение, 60-е годы. ЭВМ на дискретных полупроводниковых приборах.

3-е поколение, 70-е годы. ЭВМ на полупроводниковых интегральных микросхемах малой и средней степени интеграции (сотни - тысячи элементов на кристалл).

4-е поколение, 80-е годы. ЭВМ на больших и сверхбольших интегральных схемах.

5-е поколение 90-е годы. ЭВМ с многими десятками параллельно работающих микропроцессоров. ЭВМ на сверхсложных микропроцессорах с параллельно-векторной структурой.

6-е и последующее поколения, оптоэлектронные ЭВМ с массовым параллелизмом и нейронной структурой – с распределенной сетью большого числа не сложных микропроцессоров, моделирующих архитектуру нейронных биологических систем.

Классификация по поколениям

Деление компьютерной техники на поколения - на самом деле весьма условная, нестрогая классификация вычислительных систем по степени развития аппаратных и программных средств, а также способов общения с компьютером.
Идея классифицировать машины по поколениям вызвана " жизни тем, что за время короткой истории своего развития компьютерная техника проделала большую эволюцию как в смысле элементной базы (лампы, транзисторы, микросхемы и др.) так и в смысле изменения ее структуры, появления новых возможностей, расширения областей применения и характера использования.
1.Компьютеры первого поколения. К первому поколению обычно относят машины, созданные на рубеже 50-х гг. В их схемах использовались электронные лампы. Эти компьютеры были огромными, неудобными и слишком дорогими машинами, которые мог приобрести только крупные корпорации и правительства. Лампы потребляли огромное количество электроэнергии и выделяли много тепла. Набор команд был небольшой, схема арифметико-логического устройства и устройства управления достаточно проста, программное обеспечение практически отсутствовало. Показатели объема оперативной памяти и быстродействия были низкими. Для ввода-вывода использовались перфоленты, перфокарты, магнитные ленты и печатающие устройства. Быстродействие - порядка 10-20 тыс. операций в секунду.
Но это только техническая сторона. Очень важна и другая - способы использования компьютеров, стиль программирования, особенности их математического обеспечения. Программы для этих машин писались на языке конкретной машины. Математик, составивший программу, садился за пульт управления машины, вводил и отлаживал программы и производил по ним счет. Процесс отладки был наиболее длительным по времени. Несмотря на ограниченность возможностей, эти машины позволили выполнить сложнейшие расчеты, необходимые для прогнозирования погоды, решения задач атомной энергетики и др.
Опыт использования машин первого поколения показал, что существует огромный разрыв между временем, затрачиваемым на разработку программ, и временем счета. Эти трудности начали преодолевать путем интенсивной разработки средств автоматизации программирования, создания систем обслуживающих программ, упрощающих работу на машине и увеличивающих эффективность ее использования. Это, в свою очередь, потребовало значительных изменений в структуре компьютеров, направленных на то, чтобы приблизить ее к требованиям, возникшим из опыта эксплуатации компьютеров. Отечественные машины первого поколения: МЭСМ (малая электронная счетная машина), БЭСМ, Стрела, Урал, М-20.



2.Компьютеры второго поколения. Второе поколение компьютерной техники - машины, сконструированные примерно в 1955-1965 гг. Характеризуются использованием в них как электрон-1цк ламп, так и дискретных транзисторных логических элементов. Их оперативная память была построена на магнитных сердечниках. В это время стал расширяться Диапазон применяемого оборудования ввода-вывода, появились высокопроизводительные устройства для работы с магнитными лентами, магнитные барабаны и первые магнитные диски. Быстродействие - до сотен тысяч операций в секунду, емкость памяти - до нескольких десятков тысяч слов.
Появились так называемые языки высокого уровня, средства которых допускают описание всей необходимой последовательности вычислительных действий в наглядном, легковоспринимаемым виде. Программа, написанная на алгоритмическом языке, непонятна компьютеру, воспринимающему только язык своих собственных команд. Поэтому специальные программы, которые называются торами, переводят программу с языка высокого уровня на машинный язык. Появились широкий набор библиотечных программ для решения разнообразных математических задач; мониторные системы, управляющие режимом трансляции и исполнения программ. На основе мониторных систем в дальнейшем были созданы современнее операционные системы.
Операционная система - важнейшая часть программного обеспечения компьютера, предназначенная для автоматизации планирования и организации процесса обработки программ, ввода-вывода и управления данными, распределения ресурсов, подготовки и отладки программ, других вспомогательных операций обслуживания. Таким образом, операционная система является программным расширением устройства управления компьютера.
Для некоторых машин второго поколения были созданы операционные системы с ограниченными возможностями.
Машинам второго поколения была свойственна программная несовместимость, которая затрудняла организацию крупных информационных систем. Поэтому в середине 60-х гг. наметился переход к созданию компьютеров, программно совместимых и построенных на микроэлектронной технологической базе.
3. Компьютеры третьего поколения. Машины третьего поколения созданы примерно после 60-х гг. Поскольку процесс создания компьютерной техники шел непрерывно и в нем участвовало множество людей из разных стран, имеющих дело с решением различных проблем, трудно и бесполезно пытаться установить, когда поколение начиналось и заканчивалось. Возможно, наиболее важным критерием различия машин второго и третьего поколений является критерий, основанный на понятии архитектуры. Машины третьего поколения - это семейства машин с единой архитектурой, т. е. программно совместимых. В качестве элементной базы в них используются интегральные схемы, которые также называются микросхемами.
Машины третьего поколения имеют развитые операционные системы. Они обладают возможностями мультипрограммирования, т. е. одновременного выполнения нескольких программ. Многие задачи управления памятью, устройствами и ресурсами стала брать на себя операционная система или же непосредственно сама машина. Примеры машин третьего поколения - семейства IBM-360, IBM-370, EC ЭВМ (Единая система ЭВМ), СМ ЭВМ (Семейство малых ЭВМ) и др. Быстродействие машин внутри семейства изменяется от нескольких десятков тысяч до миллионов операций в секунду. Емкость оперативной памяти достигает нескольких сотен тысяч слов.
4.Компьютеры четвертого поколения. Четвертое поколение - это поколение компьютерной техники, разработанное после 1970 г. Наиболее важный в концептуальном отношении критерий, по которому эти компьютеры можно отделить от машин третьего поколения, состоит в том, что машины четвертого поколения проектировались в расчете на эффективное использование современных высокоуровневых языков и упрощение процесса программирования для конечного пользователя.
В аппаратурном отношении для машин четвертого поколения характерно широкое использование интегральных схем в качестве элементной базы, а также наличие быстродействующих запоминающих устройств с произвольной выборкой емкостью в десятки мегабайт.
С точки зрения структуры компьютеры этого поколения представляют сомногопроцессорные и многомашинные комплексы, работающие на общую память
общее поле внешних устройств. Быстродействие составляет до нескольких десятков миллионов операций в секунду, емкость оперативной памяти - порядка 1-64 Мбайт. Для компьютеров четвертого поколения характерны:

ü применение персональных компьютеров;

ü телекоммуникационная обработка данных;

ü объединение в компьютерные сети;

ü широкое использование систем управления базами данных;

ü элементы интеллектуального поведения систем обработки данных и устройств.

5. Компьютеры пятого поколения. Тактовая частота Pentium V составит 5-7 гигагерц, объём КЭШа второго уровня - два мегабайта. Процессор будет изготовлен по 90-нанометровому технологическому процессу. Устройство процессора позволяет крепить к нему дополнительный модуль, обеспечивающие 64-битные расширения.
Три концептуальные модели Pentium V были представлены на выставке Computex на Тайване. Следующий процессор Pentium VI Nehalem ожидается, идея заключается в том, чтобы, приобретая 32-х битный модуль, пользователь мог при необходимости наращивать его для получения 64-х битного процессора. Pentium V сможет работать с частотой системной шины до 4000 МГц, хотя столь высокая частота может быть отложена для последующих процессоров, таких как Nehalem.
Разработка последующих поколений компьютеров производится на основе больших интегральных схем повышенной степени интеграции, использования оптоэлектронных принципов (лазеры, голография). Развитие идет также по пути «интеллектуализации» компьютеров, устранения барьера между человеком и компьютером.
Классификация по условиям эксплуатации.
По условиям эксплуатации компьютеры делятся на два

ü офисные (универсальные);

ü специальные.

Офисные компьютеры предназначены для решения широкого класса задач при нормальных условиях эксплуатации.
Специальные компьютеры служат для решения более узкого класса задач или даже одной задачи, требующей многократного решения, и функционируют в особых условиях эксплуатации. Машинные ресурсы специальных компьютеров часто ограничены. Однако их узкая ориентация позволяет реализовать класс задач наиболее эффективно.
Специальные компьютеры управляют технологическими установками, работают в операционных или машинах «скорой помощи», на ракетах, самолетах и вертолетах, вблизи высоковольтных линий передач или в зоне действия радаров, радиопередатчиков, в не отапливаемых помещениях, под водой на глубине, в условиях пыли, грязи, вибраций, взрывоопасных газов и т. п. Существует много моделей таких компьютеров. Познакомимся с одной из них.
Компьютер Ergotouch (Эрготач) исполнен в литом алюминиевом, полностью герметичном корпусе, который легко открывается для обслуживания. Стенки компьютера поглощают практически все электромагнитные излучения как внутри, так и снаружи. Машина оборудована экраном, чувствительным к прикосновениям. Компьютер можно, не выключая, мыть из шланга, дезинфицировать, дезактивировать, обезжиривать. Высочайшая надежность позволяет использовать его как средство управления и контроля технологическими процессами в реальном времени. Компьютер легко входит в локальную сеть предприятия.
Важное направление в создании промышленных компьютеров - разработка операторского интерфейса - пультов управления, дисплеев, клавиатур и указательных устройств во всевозможных исполнениях. От этих изделий напрямую зависит комфортность и результативность труда операторов.
Классификация по производительности и характеру использования.
По производительности и характеру использования компьютеры можно условно подразделить на:

ü микрокомпьютеры, в том числе персональные компьютеры;

ü мини-компьютеры;

ü мэйнфреймы (универсальные компьютеры);

ü суперкомпьютеры.

Микрокомпьютеры - это компьютеры, в которых центральный процессор выполнен в виде микропроцессора. Современные модели микрокомпьютеров имеют несколько микропроцессоров. Производительность компьютера определяется не только характеристиками применяемого микропроцессора, но и емкостью оперативной памяти, типами периферийных устройств, качеством Конструктивных решений и др. Микрокомпьютеры представляют собой инструменты для решения разнообразных сложных задач. Их микропроцессоры с каждым годом увеличивают мощность, а периферийные устройства - эффективность. Быстродействие - порядка 1 - 10 млн. операций в секунду.
Персональные компьютеры (ПК) - это микрокомпьютеры универсального назначения, рассчитанные на одного пользователя и управляемые одним человеком.
В класс персональных компьютеров входят различные машины - от дешевых домашних и игровых с небольшой оперативной памятью, с памятью программы на кассетной ленте и обычным телевизором в качестве дисплея до сверхсложных машин с мощным процессором, винчестерским накопителем емкостью в десятки гигабайт, с цветными графическими устройствами высокого разрешения, средствами мультимедиа и другими дополнительными устройствами.
Персональный компьютер имеет следующие характеристики:

ü стоимость от нескольких сотен до 5-10 тыс. долларов;

ü наличие внешних ЗУ на магнитных дисках;

ü объем оперативной памяти не менее 4 Мбайт;

ü наличие операционной системы;

ü способность работать с программами на языках высокого уровня;

ü ориентация на пользователя-непрофессионала (в простых моделях).

Мини-компьютерами и суперминикомпьютерами называются машины, конструктивно выполненные в одной стойке, т. е. занимающие объем порядка половины кубометра. Сейчас компьютеры этого класса вымирают, уступая место микрокомпьютерам.
Мэйнфреймы предназначены для решения широкого класса научно- технических задач и являются сложными и дорогими машинами. Их целесообразно применять в больших системах при наличии не менее 200-300 рабочих мест. Централизованная обработка данных на мэйнфрейме обходится примерно в 5-6 раз дешевле, чем распределенная обработка при клиент-серверном подходе. Известный мэйнфрейм S/390 фирмы IBM обычно оснащается не менее чем тремя процессорами. Максимальный объем оперативного хранения достигает 342 Тбайт. Производительность его процессоров, пропускная способность каналов, объем оперативного хранения позволяют наращивать число рабочих мест в диапазоне от 20 до 200 000 с помощью простого добавления процессорных плат, модулей оперативной памяти и дисковых накопителей. Десятки мэйнфреймов могут работать совместно под управлением одной операционной системы над выполнением единой задачи.
Суперкомпьютеры - это очень мощные компьютеры с производительностью свыше 100 мегафлоп (1 мегафлоп - миллион операций с плавающей точкой в секунду). Они называются сверхбыстродействующими. Эти машины представляют собой многопроцессорные и (или) многомашинные комплексы, работающие на общую память и общее поле внешних устройств. Различают суперкомпьютеры среднего класса, класса выше среднего и переднего края(High end). Отличительной особенностью суперкомпьютеров являются векторные процессоры, оснащенные аппаратурой для параллельного выполнения операций с многомерными цифровыми объектами - векторами и матрицами. В них встроены векторные регистры и параллельный конвейерный механизм обработки. Наиболее распространенные суперкомпьютеры - массово-параллельные компьютерные системы. Они имеют десятки тысяч процессоров, взаимодействующих через сложную, иерархически организованную систему памяти.
Суперкомпьютеры используются для решения сложных и больших научных задач (метеорология, гидродинамика и т. п.), в управлении, разведке, в качестве централизованных хранилищ информации и т. д. Элементная база - микросхемы сверхвысокой степени интеграции.
Типы портативных компьютеров.
Портативные компьютеры обычно нужны руководителям предприятий, менеджерам, ученым, журналистам, которым приходится работать вне офиса - на презентациях или во время командировок. Микрокомпьютер, настольный или портативный компьютер, который использует микропроцессор в качестве единственного центрального процессора, выполняющего все логические и арифметические операции. Микрокомпьютеры относят к вычислительным машинам четвертого и пятого поколения. Помимо ноутбуков, к переносным микрокомпьютерам относят и карманные компьютеры - палмтопы. Основными признаками микрокомпьютеров являются шинная организация системы, высокая стандартизация аппаратных и программных средств, ориентация на широкий круг потребителей.

Классификация ЭВМ по назначению

Универсальные ЭВМ – для решения широкого круга задач.

Проблемно-ориентированные ЭВМ – служат для решения более узкого круга задач связанных, как правило, с управлением технологическими объектами, регистрацией, накоплением и обработкой относительно небольших объемов данных.

Специализированные ЭВМ – используются для решения узкого круга задач или реализации строго определенной группы функций.

Классификация ЭВМ по размерам и функциональным возможностям.

Супер ЭВМ - вычислительная машина, значительно превосходящая по своим техническим параметрам большинство существующих компьютеров. Из-за большой гибкости самого термина до сих пор распространены довольно нечёткие представления о понятии «суперкомпьютер». В общем случае, суперкомпьютер - это компьютер значительно более мощный, чем доступные для большинства пользователей машины. При этом, скорость технического прогресса сегодня такова, что нынешний лидер легко может стать завтрашним аутсайдером. Архитектура также не может считаться признаком принадлежности к классу суперкомпьютеров. Ранние компьютеры CDC были обычными машинами, всего лишь оснащёнными быстрыми для своего времени скалярными процессорами, скорость работы которых была в несколько десятков раз выше, чем у компьютеров, предлагаемых другими компаниями. Большинство суперкомпьютеров 70-х оснащались векторными процессорами, а к началу и середине 80-х небольшое число (от 4 до 16) параллельно работающих векторных процессоров практически стало стандартным суперкомпьютерным решением. Конец 80-х и начало 90-х годов охарактеризовались сменой магистрального направления развития суперкомпьютеров от векторно-конвейерной обработки к большому и сверхбольшому числу параллельно соединённых скалярных процессоров.

Классификация ПЭВМ

Международная классификация ПЭВМ

ü массовые;

ü офисные (деловые);

ü портативные;

ü рабочие станции;

ü развлекательные.

ПЭВМ относится к классу микро ЭВМ и является машиной инди­видуального пользования. Это общедоступный и универсальный ин­струмент, многократно повышающий производительность интеллек­туального труда специалистов различного профиля. ПЭВМ предна­значена для автономной работы в диалоговом режиме с пользовате­лем. Общедоступность ПЭВМ определяется сравнительно низкой стоимостью, компактностью, отсутствием специальных требований как к условиям эксплуатации, так и степени подготовленности поль­зователя.

Основой ПЭВМ является микропроцессор (МП). Развитие техни­ки и технологии

ü микропроцессоров определило смену поколений ПЭВМ:

ü первое поколение (1975-1980 гг.) - на базе 8-разрядного МП;

ü второе поколение (1981-1985 гг.) - на базе 16-разрядного МП;

ü третье поколение (1986-1992 гг.) - на базе 32-разрядного МП;

ü четвертое поколение (1993 г. - по настоящее время) - на базе 64-разрядного МП.

Большую роль в развитии ПЭВМ сыграло появление компьютера IBM PC, произведенного корпорацией IBM (США) на базе микро­процессора InteI-8086 в 1981г. Этот персональный компьютер занял ведущее место на рынке ПЭВМ. Его основное преимущество - так называемая «открытая архитектура», благодаря которой пользователи: могут расширять возможности приобретенной ПЭВМ, добавляя раз­личные периферийные устройства и модернизируя компьютер. В дальнейшем другие фирмы начали создавать компьютеры, со­вместимые с IBM PC и, таким образом, компьютер IBM PC стал как бы стандартом класса ПЭВМ. В наши дни около 85 % всех продавае­мых ПЭВМ базируется на архитектуре IBM PC.

Бытовые ПЭВМ предназначены для массового потребителя, поэтому они должны быть достаточно дешевыми, надежными и иметь, как правило, простейшую базовую конфигурацию. Бытовые ПЭВМ используются в домашних условиях для развлечений (видеоигры), для обучения и тренировки, управления бытовой техни­кой. Однако архитектура этих машин позволяет подключать их к ка­налам связи, расширять набор периферийного оборудования. При некоторой модернизации эти модели могут использоваться для инди­видуальной обработки текста, решения небольших научных и инже­нерных задач (например, отечественная ПЭВМ «Амата»). Бытовые ПЭВМ снабжаются пакетом игр, программным обеспечением ло­кальной сети и др. Фирмы предлагают за дополнительную плату на­растить комплектность компьютера НЖМД типа «винчестер», музы­кальной картой, монитором и т.д. Модель «Амата» легко превраща­ется в ПЭВМ общего назначения.

Персональные ЭВМ общего назначения применяются для решения задач научно-технического и экономического характера, а также для обучения и тренировки. Они размещаются на рабочих местах пользователей: на предприятиях, в учреждениях, в магазинах, на складах и т.п. Машины этого класса обладают достаточно большой емкостью оперативной памяти, имеют внешнюю память на гибких и жестких магнитных дисках, собственный дисплей. Интерфейсы позволяют подключать большое количество периферийных устройств, средства для работы в составе вычислительных сетей.

ПЭВМ общего назначения используются прежде всего пользова­телями-непрофессионалами. Поэтому они снабжаются развитым про­граммным обеспечением, включающим операционные системы, трансляторы с алгоритмических языков, пакеты прикладных про­грамм. В состав аппаратуры входят устройства для вывода как тек­стового, так и графического материала, принтеры с высоким качест­вом печати. Этот класс ПЭВМ получил наибольшее распространение на мировом рынке.

ЭВМ это комплекс программных средств, предназначенных для автоматической обработки информации.

В зависимости от аппаратной базы различают несколько поколений ЭВМ:

§ Первое поколение. Релейные и ламповые компьютеры

§ Второе поколение. Полупроводниковые компьютеры

§ Третье поколение. Компьютеры на интегральных схемах

§ Четвёртое поколение. Компьютеры на (сверх)больших интегральных схемах

§ Пятое поколение. Многопроцессорные компьютеры

Реализована идеология функционирования ЭВМ может быть по-разному: аппаратурными, программно-аппаратурными или программными средствами. При аппаратурной и программно-аппаратурной реализации могут быть применены регистры, дешифраторы, сумматоры; блоки жесткого аппаратурного управления или микропрограммного с управлением подпрограммами (комплексами микроопераций); устройства или комплексы устройств, реализованные в виде автономных систем (программируемых или с жестким управлением) и др. При программной реализации могут быть применены различные виды программ - обработчики прерываний, резидентные или загружаемые драйверы, соm-, ехе- или tsr - программы, bat- файлы и др.
Способы реализации функций ЭВМ составляют структурную организацию ЭВМ. Тогда элементная база, функциональные узлы и устройства ЭВМ, программные модули различных видов (обработчики прерываний, драйверы, соm-, ехе-, tsr-программы, bat-файлы и др.) являются структурными компонентами ЭВМ.

Организация работы ЭВМ при выполнении задания пользователя
Один из «прозрачных» процессов машины – это организация ввода, преобразование и отображение результатов работы системного программного обеспечения. Программа задания, написанная программистом на алгоритмическом языке называется исходным модулем.
Перевод исходной программы на машинный язык осуществляет программа translator. Он делится на: компилятор и интерпретатор.
Интерпретатор – после перевода на язык машины каждого оператора исходного модуля немедленно его исполняет.
Компилятор – сначала полностью переводит всю программу исходного модуля на машинный язык, затем его исполняет.
Объектный модуль – машинный язык.

Обобщенная структура ЭВМ

Простейшая структура ЭВМ с локальными шинами между ее устройствами, приведена на рисунке 1.4.1.

Рисунок 1.4.1-Обобщенная структура ЭВМ
В состав ЭВМ входят:
- оперативное запоминающее устройство (ОЗУ, более короткое обозначение- оперативная память ОП);
- процессор;
- устройство ввода- вывода (УВВ, другое обозначение- периферийное устройство ПУ);
-пульт контроля и управления (ПКУ).
Процессор предназначен для обработки информации. Он состоит из 2-х частей: УУ - устройство управления (управляющий автомат), и АЛУ - арифметико-логическое устройство.
Обработку информации процессор осуществляет под управлением программы, хранящейся в ОЗУ. В ОЗУ наряду с программой также хранятся и данные, подлежащие обработке. Программа и данные поступают из ОЗУ в процессор по каналу связи между ОЗУ и процессором, называемым в вычислительной технике шиной. Такие же шины соединяют процессор и с другими устройствами ЭВМ.
УВВ предназначено для ввода программ и данных в ОЗУ, то есть они сначала подготавливаются либо в виде перфокарт (ПФК), перфолент (ПФЛ), либо в виде магнитных лент, магнитных дисков и т.п., а затем вводятся в ОП машины. После этого программа запускается на обработку. В современных машинах диалогового режима данные в ОП могут заноситься и непосредственно с клавиатуры.
ПКУ предназначен для ручного пуска различного рода тестовых программ, контроля хода вычислительного процесса или функционирования устройств ЭВМ.

Характеристика основных устройств.
Обобщенная структурная схема ЭВМ включает 5 основных функциональных блоков: устройство ввода (УВв), запоминающее устройство (ЗУ), арифметико-логическое устройство (АЛУ), центр. устройство управления (ЦУУ) и устройство вывода информации (УВыв).
1)УВв : клавиатура (основное УВв информации); сканер; устройства введение речевой информации, например, с помощью микрофона, дисководы CD-ROM, DVD-ROM, дисководы для гибких магнитных дисков (дискет), диджитайзеры.
2)УВыв: принтеры (матричные, литерные, термографические, струйные, лазерные), дисплей, устройства вывода на микрофильм с применением фотопленки в качестве носителя (большая скорость вывода – 1500-2700 строк/мин.), вывод графической информации с помощью графопостроителя, дисководы CD-ROM, DVD-ROM, дисководы для гибких магнитных дисков (дискет), устройство вывода речевой инф-ии, плоттер (вывод графической инф.).
3)ЗУ: 3 вида: внутр. память: ОЗУ (оперативное запом. устройство) и ПЗУ (постоянное ЗУ); внешние ЗУ (ВЗУ).
ОЗУ служит для хранения данных, обрабатываемых процессором. Построена на микросхемах, для нее используется динамическая память, хар-ся емкостью (32 мВт), быстродействием. Поскольку доступ к любой ячейке этой памяти может осуществляться в любой момент времени, то ее называют памятью с произвольной выборкой (RAM). ОЗУ состоит из матрицы запоминающих элементов, регистров адреса, регистров числа и схем местного управления. Построена на БИС (боьшая интегральная схема) и СБИС (сверхбольшая интегр. схема) и является энергозависимой: при откл. питания информация в ОП теряется.
К внутр. памяти также относится ПП (пост. память), предназначенная для хранения постоянной информации, не изменяющейся в процессе вычисления. ПП используется для хранения микропрограмм, пограмм-трансляторов, стандартных программ, нормативных данных и т.п. ПЗУ работают только в режиме считывания информации, поэтому их конструкция проще, они дешевле, надежнее, чем ОЗУ. В ПЗУ хранится BIOS – базовая система ввода-вывода. ПЗУ делится на : 1) программируемые в процессе изготовления ПЗУ (ROM). Запись производится однократно. Такие ПЗУ имеют самую высокую плотность записи информации, они дешевые и конструктивно самые простые; 2) однократно программируемые заказчиком ПЗУ (PROM). Запись инф-ии выполняет заказчик с помощью спец. устройств (программаторов) по своему усмотрению, перезапись невозможна; 3) многократно перепрограммируемые ПЗУ допускают многократную запись инф-ии заказчиком и электрическое либо ультрафиолетовое стирание на спец. устройствах вне машины. Энергозависима.
ВЗУ – обеспечивают хранение больших массивов инф-ии. Относительно недороги, но менее быстродействующие по сравн. с устройствами внутренней памяти.ВЗУ делится на: 1) НМЛ (накопители на магнитных лентах); 2) НД (накоп. на дисках): НЖМД (накоп. на жестких маг. дисках - винчестер), НГМД (на гибких – дискета: слой пластика, покрытый магнитным слоем), ОД (оптич. диски). ОД : CD-ROM, DVD, CD-R, CD-RW, MO (магнитнооптич. диски).
4)АЛУ: выполняет арифметические и логические операции над операндами в принятой системе исчисления и вырабатывает признаки результата, необходимые для управления ходом вычислительного процесса. Иногда АЛУ наз-ся оперативным блоком. Содержит: регистры для приема операндов из ОП и хранения их в течение времени выполнения операции; сумматор, осуществляющий преобразование инф-ии; логические схемы для сдвига операндов вправо и влево и перевода из одного кода в другой; местный блок управления схемы оперативного контроля.
5) ЦУУ : реализует программный принцип управления и обеспечивает координацию работы всех блоков машины. В состав входит: блоки синхронизации, блоки формирования исполнительных адресов операндов, блоки управления операциями.
Следует отдельно сказать о центр. процессоре (ЦП) . В него входят: ЦУУ, АЛУ, внутренняя память, спец. системные средства (счетчик времени, ср-ва управл. ОП и т.п.) Процессор часть ЭВМ, кот. осуществляет управление данными и их обработкой. Процессор координирует работу всех устройств.
Осн. функции: выработка синхроимпульсов, анализ данных для управления, формулировка адресов для обращения, работа с памятью ЭВМ, обмен данными с др. устройствами.

Полнотекстовый поиск:

Где искать:

везде
только в названии
только в тексте

Выводить:

описание
слова в тексте
только заголовок

Главная > Реферат >Информатика


Основные характеристики ЭВМ.

Классификация средств электронной вычислительной техники.

Комплекс технических и программных средств, предназначенные для автоматизации подготовки и решения задач пользователей. Пользователем понимают человека, в интересах которого проводится обработка данных на ЭВМ. В качестве пользователя могут выступать, программисты работ, программисты, операторы. Структура – совокупность элементов и их связей. Различают структуры технических, программных и аппаратурно-программных средств. Выбирая ЭВМ для решения своих задач пользователь интересуется функциональными возможностями технических и программных модулей при этом пользователь интересуется не конкретной технической реализацией отдельных модулей, а более общими вопросами возможности организации вычисления.

Архитектура ЭВМ – это многоуровневая иерархия аппаратно- программных средств из которых состоит ЭВМ. Каждый из уровней допускает многовариантное построение и применение. Конкретная реализация уровней определяет особенности структурного построения ЭВМ. Детализацией архитектурного и структурного построения ЭВМ занимаются различные категории специалистов вычислительной техники. Инженеры схемотехники проектируют отдельные технические устройства и разрабатывают методы их сопряжения друг с другом. Системные программисты создают программы управления технического средства информационного взаимодействия между уровнями или программой вычислительного процесса. Программисты прикладники разрабатывают пакеты программ более высокого уровня, которые обеспечивают взаимодействия пользователей с ЭВМ и необходимый сервис при решении ими своих задач. Характеристики ЭВМ определяющих её структуру.

    Технические и эксплутационные характеристики ЭВМ (быстродействие и производительность, указатель надёжности достоверности точность, ёмкость оперативной памяти, габаритные размеры, стойкость технических и программных средств, особенности эксплуатации).

    Характеристики и состав функциональных модулей базовой конфигурации ЭВМ; возможность расширения состава технических и программных средств возможность изменения структуры.

    Состав программного обеспечения ЭВМ и сервисных услуг (оперативная система или среда, пакеты прикладных программ и средства автоматизации программирования).

Одно из важнейших характеристик ЭВМ является её быстродействие, в которой характеризуется числом команд, выполняемых ЭВМ за 1 сек.

Реальное или эффективное быстродействие, обеспечиваемое ЭВМ значительно ниже оно может сильно отличаться в зависимости от класса решаемых задач. К сравнению по быстродействию достоверных оценок, поэтому вместо характеристики быстродействия часто используют связанную с ней характеристику производительности – объём работ осуществляемых ЭВМ в единицу времени. Ёмкость заполняющих устройств: ёмкость в памяти измеряется количеством структурных единиц информации, которая может одновременно размещаться в памяти. Структурной наименьшей единицей информации является бит – одна двоичная цифра. Обычно ёмкость памяти оценивается в более крупных единицах измерения – байт.

Надёжность – это способность ЭВМ при определённых условиях выполнять требуемые функции в течение заданного периода времени.

Высокая надёжность закладывается в процессе её производства переход на новую элементную базу сверх большие интегральные схемы (СБИС – сверх большие интегральные схемы резко сокращает число используемых интегральных схем, а значит использует число их соединений друг с другом).

Точность – это возможность различать почти равные значения, точность получение результатов обработки в основном определяется разрядностью ЭВМ, а так же используемыми структурными единицами. Представление информации (байтом, словом, двойным словом).

Достоверность – свойство информации быть правильно воспитанной. Достоверность характеризуется вероятностью получения безошибочных результатов. Заданный уровень достоверности обеспечивается аппаратурно-программными средствами контроля самой ЭВМ.

Классификация средств ЭВТ.

1. Традиционную ЭВТ разделяют на аналоговую и цифровую. В ЭВМ обрабатываемая информация представляет соответствующими знаниями аналоговых величин: тока, напряжения, угла поворота какого-то механизма и т.п. Обеспечивает приемлемое быстродействие за не очень высокую точность вычисления (0,001-0,01). Используются в основном в проектных и научно-исследовательских учреждениях в составе различных стендов для обработки сложных образцов техники. По своему назначению их можно рассматривать, как специализированные вычислительные машины. Цифровые вычислительные машины – в них информация кодируется двоичными кодами цифр, они являются самой массовой вычислительной техники.

2.В настоящее время выпускается в основном 4 класса ПК.

    Большие ЭВМ (main frain) они представляют собой многопользовательские машины с центральной обработкой, с большими возможностями для работы с базами данных и с различными формами удалённого доступа.

    Машины RS6000 – очень мощные по производительности, предназначенные для построения рабочих станций для работы с графикой, Unix с сервером кластерных комплексов.

    Средние ЭВМ – предназначенные в первую очередь работать в финансовых структурах (ЭВМ типа AS\400-бизнес ПК 64-разрядный). Они используются в качестве серверов локальных сетей и сетей корпорации, успешно конструируют с многопроцессорными серверами других фирм.

    Компьютеры на платформе микросхем фирмы Intel.

    СуперЭВМ. 2.Большие ЭВМ. 3. средние ЭВМ. 4. Персональные и профессиональные ЭВМ. 5. Встраиваемые микросхемы.

Общие принципы построения современных ЭВМ.

    Основной принцип построения современных ЭВМ.

    Понятие алгоритма.

    Понятие программы для ЭВМ.

    Принцип программного управления.

1.Основным принципом построения всех современных ЭВМ является программное управление. В основе его лежит представление алгоритма решения любой задачи в виде программы вычисления.

2.Алгоритм – конечный набор предписаний, определяющий решение задачи по средством конечного количества операций.

3.”Программа (для ЭВМ) – упорядоченная последовательность команд подлежащей обработки” стандарт ISO 2381/-84. Следует заметить, что строгого однозначного определения алгоритма равно, как однозначных методов преобразования алгоритмов в программу вычислений не существует.

4.Принцип программного управления может быть осуществлён различными способами: стандартом для построения практически всех ЭВМ стал способом, описанный Фон-Нейманом в 1945г. построений ещё первых образцов ЭВМ. Суть его заключается в следующем: все вычисления предписанные алгоритмом решения задач должны бать представлены в виде программы, состоящие из последовательности управляющих слов команд. Каждая команда содержит указание на конкретную выполняемую операцию места нахождения (адреса) операндов и ряд служебных признаков. Операнды – это переменные значения, которых участвуют в операциях преобразования данных, списков (массив) всех переменных (входных данных промежуточных значений и результатов вычислений) является ещё одним неотъемлемым вычислением другой программы. Для доступа к программам, командам и операциям используют их адреса . В качестве адресов выступают номера ячеек памяти ЭВМ предназначенных для хранения объектов. Информация (командная и данные: числовые, текстовая, графическая и т.п.) копируется двоичными цифрами 0 и 1, поэтому различные типы информации, размещенные в памяти ЭВМ практически не различимы, идентификация их возможна только при выполнении программ согласно её логике по контексту. Последовательность битов в формате имеющая определённый смысл называется – полем. Например: каждой команде программы различают поле кода, операция поля адресов, операндов приблизительно к числовой информации выделяют знаковые разряды поля значащих разрядов чисел старшие и младшие разряды. Последовательность, состоящая из определённого принятого для данной ЭВМ числа байтов называется словом.

Алгоритм – конечный набор предписаний определённых решений задачи посредством конечного количества операций.

Программа для ЭВМ – упорядоченная последовательность команд подлежащая обработке.

Операнды – это переменные, значения которых участвуют в операциях преобразования данных.

Поле – последовательность битов в формате, имеющие определённый смысл.

Внутренняя структура вычислительной машины.

1.Основные устройства ЭВМ.

2.Процессор или микропроцессор.

3.Память ЭВМ.

4.Оперативная память.

5.Постоянная память

6.Устройство ввода/вывода.

7.Системные интерфейсы.

8.Внешняя память.

9.Пульт управления.

Любое ЭВМ неймоновской архитектуры содержит следующие основные устройства:

1.Арифметическо-логическое устройство (АЛХ)

2.Устройство управления (УУ).

3.Заполняющее устройство (ЗУ).

4.Устройство ввода/вывода (УВВ).

5.Пульт управления (ПУ).

В современных ЭВМ АЛУ и УУ объединены в общее устройство и называются центральным процессором.

Процессор или микропроцессор является основным устройством ЭВМ он предназначен для выполнения вычислений по хранящейся в Запоминающем устройстве программы и обеспечения общего управления ЭВМ. Быстродействие ЭВМ в значительной мере определяется скорость работы процессора. Для её увеличения процессор использует собственную память небольшого объёма именуемую местной или сверхоперативной, что в некоторых случаях исключает необходимость обращения к запоминающему устройству ЭВМ. Вычислительный процесс должен быть предварительно представлен для ЭВМ в виде программы, последовательности инструкций (команд) записанных в порядке выполнения. ЭВМ выбирает определённую команду расшифровывает её, определяет какие действия и над какими операциями следует выполнить. Эту функцию осуществляет устройство управления, оно же помещает выбранные из ЗУ операнды в АЛУ, где они обрабатываются. Само АЛУ работает под управлением УУ.

2.2.Обрабатываемае данные и выполняемые программы должны находиться в ЗУ – памяти ЭВМ, куда вводятся ч/3 устройство ввода. Ёмкость памяти измеряется в величинах кратких байту. Память представляет собой сложную структуру, построенную по иерархическому принципу и включает в себя ЗУ различных типов, функционально она делится на 2 части: внутреннюю и внешнюю.

Внутренняя или основная память – это ЗУ напрямую связанная с процессором и предназначенная для хранения выполняемых программ и данных непосредственно участвующих вычислению. Обращение к внутренней памяти ЭВМ осуществляется с высоким быстродействием, но она имеет ограниченный объём определяемой системы адресации машин. В свою очередь делится на оперативную ОЗУ и постоянную ПЗУ память. Оперативная память по объёму составляющая большую часть внутренней памяти и служит для приёма хранения и выдачи информации. При включении питания ЭВМ содержимое оперативной памяти в большинстве случаев теряется. Постоянная память обеспечивает хранение и выдачу информации в отличии от содержимого оперативной памяти содержимое постоянной памяти заполняется при изготовлении ЭВМ и не может быть изменено в обычных условиях эксплуатации. В постоянной памяти хранятся часто используемые (универсальные) программы. Пример: некоторые программы операционной системы, программы тестирования оборудования ЭВМ и другие, при выключении ПК содержимое постоянной памяти сохраняется.

Внешняя память предназначена для размещения больших объёмов информации (диски и ленты), которые к тому же являются переносимыми. Ёмкость этой памяти практически не имеет ограничений, а для обращения к ней требуется больше времени, чем ко внутренней. В ЗУ конструктивно отделены от центральных устройств ЭВМ процессора и внутренней памяти имеют собственное управление и выполняет запросы процессора без его непосредственного вмешательства. В качестве ВЗУ используют накопители на магнитных и оптических дисках, а так же накопители на магнитных лентах. ВЗУ по принципам функционирования разделяются на устройство прямого доступа (накопители на оптических и магнитных дисках) и устройство последовательно доступа (накопители на магнитных лентах). Устройство прямого доступа обладает большим быстродействием поэтому они являются основными внешними запоминающими устройствами постоянно используемыми в процессе функционирования ЭВМ. Устройство последовательного действия используется для резервирования информации.

4.Устройство ввода/вывода (УВВ) служит для ввода информации ЭВМ и вывода из неё, а так же для обеспечения общения пользователя с машиной. Процессор ввода/вывода протекает с использованием внутренней памяти ЭВМ иногда устройство ввода/вывода называют периферийными к ним в частности относят дисплеи (мониторы), клавиатура, манипуляторы типа мышь, алфавитно цифровые печатающие устройство (принтер), графонакопители, сканеры и т.д. Для управления внешними устройствами в том числе и ВЗУ и согласование с их системным интерфейсом служат групповые устройства управления внешними устройствами, адаптеры или контролёры.

Системный интерфейс – это конструктивная часть ЭВМ предназначенная для взаимодействия её устройств и обмена информации между ними. В больших средних и супер ЭВМ в качестве системного интерфейса используются сложные устройства имеющие встроенные процессоры ввода/вывода именуемые началами такие устройства обеспечивают высокую скорость обмена данными между компонентами ЭВМ является использованием в качестве системного интерфейса системных шин. Различают ЭВМ с многошинной структурой и с общей шиной

I-Во-первых для обмена информации между устройствами используются отдельные группы шин.

II-Во-втором случае все устройства ЭВМ объединяются с помощью одной группы шин в которую входят подмножества шин для передачи данных, адреса и управляющих сигналов, при такой организации системы шин обмен информации между процессором памятью и периферийными устройствами выполняется с по единому правилу, что упрощает взаимодействие устройств машин.

Пульт управления служит для управления оператором ЭВМ или системным программистом системных операций в ходе управления вычислительного процесса, кроме того при техническом обслуживании ЭВМ за пультом управления работает инженерно технический персонал. Пульт управления конструктивно часто выполняется вместе с центральным процессором.

Общие принципы построения функциональной и структурной организации ЭВМ.

Функциональную организацию ЭВМ образуют коды, система команд, алгоритмы выполнения машинных операций технология выполнения различных процедур и взаимодействия аппаратного и программного обеспечения, способы использования устройств при организации их совместной работы. Функционирование ЭВМ может быть реализовано по-разному: аппаратно-программно, аппаратными или или программными средствами.

1.При аппаратно-программном и программными реализациями могут применены: регистры, дешифраторы, сумматоры, блоки жёсткого и аппаратурного управления или блоки микропрограммного с управлением программами(комплексами микроопераций). Устройства или комплексы устройств, реализованными в виде автоположных систем (программируемых или с жёстким управлением).

Регистр – это устройство в составе ЭВМ для приёма и запоминания одного числа, так же для выполнения определённых операций над ними. Регистр, представляет собой совокупность взаимосвязанных триггеров общей системой управления входными и выходными сигналами. Разрядность регистра определяется числом используемых в нём триггеров. По виду выполняемых операций над числами различают регистры для приёма, передачи и сдвига.

2.При программной реализации могут быть применены различные виды программ: обработчики прерывания, резидентные или загрузочные драйвера.

Exe, – программы

Tsr, и подфайлы

Будем считать, что способы реализации функций ЭВМ составляет структурную организацию ЭВМ. Тогда элементная база, функциональные узлы и устройство ЭВМ программные модули различных видов (обработчики прерываний, драйверы, com, exe, tsr, bat, программы и подфайлы и другие, являются структурными компонентами ЭВМ). При серьёзных конструктивных различиях, ЭВМ могут быть совместными, т.е. приспособленными к работе с одними и теми же программами (программная совместимость) и получению одних и тех же результатов при одной и той же однотипно представленной информации (информационная совместимость).

Если аппаратурная часть электронных вычислительных машин ЭВМ допускает их электрическое соединение для совместной работы и предусматривает обмен одинаковыми последовательности сигналов, то имеет место и техническая совместимость ЭВМ. Совместимые ЭВМ должны иметь одинаковую функциональную организацию: информационные элементы (символы)должны одинаково представляться при вводе и выводе из ЭВМ, системе команд должна обеспечивать в этих ЭВМ получение одинаковых результатов при одинаковых преобразованиях информации. Работой таких машин должны управлять функционально-совместимые операционные системы (а для этого должны быть совместимы методы и алгоритмы планирования и управления работой аппаратурно-программного вычислительного комплекса). Аппаратурные средства должны иметь согласование питающие напряжения, частотные параметры сигналов, а главное состав, структуру, и последовательность выработки управляющих сигналов. При неполной совместимости ЭВМ (при наличии различий в их функциональной реализации) применяют эмулятор т.е. программные преобразователи функциональных элементов.

Организация функционирования ЭВМ с магистральной архитектурой

1.ЭВМ как совокупность устройств.

2.Разделение устройств ЭВМ.

3.Системная магистраль.

4.Однопрограммный режим работы.

5.Многопрограммный режим работы.

1.ЭВМ представляет собой совокупность устройств выполненных на больших интегральных схемах каждая из которых имеет своё функциональное назначение. Комплект интегральных схем из которых состоит ЭВМ называется микропроцессорном комплектом. В состав микропроцессорных компонентов входят: системный таймер, микропроцессор, сопроцессоры, контролёр прерываний, контролёр прямого доступа к памяти. Контролёры устройств ввода/вывода.

2.В центральных устройствах основным узлом связывающий микропроцессорный комплект в единое целое является системная магистраль. Она состоит из 3 узлов: шина данных, шина управления, шина адреса. В состав системной магистрали входят регистры защёлки, в которых запоминается передаваемая информация, шинные формирователи, шинные арбитры определяющие поочерёдность системной магистрали. Логика работы системной магистрали – количество разрядов в шинах данных адреса и управления порядок разрешения конфликтных систуаций возникающих при одновременном обращении различных устройств ЭВМ системной магистрали образуют интерфейс системной шины. Состав центральных устройств ЭВМ входят: центральный процессор, основная память и ряд дополнительных устройств (узлов), выполняющих служебные функции: контролёр прерываний, таймер, и контролёр прямого доступа к памяти. Периферийные устройства делятся на два вида: внешние запоминающие устройства (магнитные диски, носители на магнитных дисках), устройство ввода/вывода (клавиатура, адаптор каналов связи, принтер и др.).

Взаимодействие микропроцессора с внешними устройствами предусматривает выполнение логической последовательности действий, связанных с поисками устройств, определения его технического состояния обмена командами и информацией. Это логическая последовательность действий вместе с устройствами реализующими её называется интерфейсом ввода/вывода.

Организация работы ЭВМ при выполнении задания пользователя.

Организация процессов ввода, преобразования и вывода (отображения) результатов относится к сфере системного программного обеспечения. Написанное задание (программы представляет собой исходный модуль сопровождаемый управляющими предложениями, указывающие ОС ЭВМ на каком языке написана программа, и что с неё надо делать. Если программа написана на алгоритмическом языке, то управляющие предложения на языке управления ОС.

Исходный модуль пред исполнением должен быть переведён на внутренний язык машины. Эта операция выполняется специальной программой транслятором . Трансляторы выполняются в виде 2 различных программ – интерпретаторы и компиляторы. Интерпретатор после перевода на язык машины каждого оператора алгоритмического языка немедленно исполняет поученную машинную программу представленную ему в виде исходного модуля (ИМ) на язык машины. Получаемая при этом машинная программа представляет собой объективный модуль (ОМ) результат работы компилятора может быть записан в библиотеку объёктных модулей (БОМ) или передан другим программам для дальнейшей обработке т.к. полученная машинная программа не готова к исполнению по двум причинам:

I. Она содержит не разрешённые внешние ссылки т.е. (обращение к программам, которые не содержатся в исходном модуле, но необходимы для работы основной программы) Например к стандартным программам алгоритмического языка таким как, вычисление корня квадратичного, вычисление тригонометрических функций и др.

II. Объектный модуль представляет собой машинную программу в условных адресах. Каждый объектный модуль начинается с адреса (0h), тогда, как для исполнения программа должна быть привязана к конкретным физическим адресам основной памяти.

Недостающие программы должны быть взяты из библиотек компилятора, которые могут быть написаны в виде исходных, либо в виде объектных модулей и добавлены к основной программе. Эту операцию выполняют редактор связей в результате работы редактора связей образуется загрузочный модуль (ЗМ), который помещает в соответствующую библиотеку ЗМ. В ЗМ все ссылки разрешены т.е. он содержит все необходимые стандартные программы, но привязки к памяти у ЗМ нет.

Привязка к памяти загрузочного модуля производится программой выборки, которая переносит ЗМ из БЗМ (обычно хранящейся на магнитном носителе) в основную память во время этого переноса корректирует адреса учитывая с какого адрес основной памяти размещается загрузочный модуль. После перемещения ЗМ в основную память программе выборки инициирует её выполнение. Представление машинной программы в виде исходных, объектных и загрузочных модулей позволяет реализовать наиболее эффективные программные комплексы.

Виртуальная память

Имея иерархическую структуру запоминающих устройств на реальном объёме памяти значительно меньше максимального. Можно имитировать работу с максимальной памятью. В этом случае программист работает так, как будто ему предоставляется реальная память максимального объёма для данной ЭВМ, хотя имеющаяся реальная память значительно меньше по объёму. Такой режим работы называется режимом виртуальной памяти. Теоретически доступная пользователь оперативная память, объём которой определяется только разрядностью адресной части команды и которая не существует в действительности – называется виртуальной памятью. Виртуальная память имеет сегментно-стороничную организацию и реализована в иерархической системе памяти ЭВМ. Часть её размещается в страничных блоках основной памяти, а часть в ячейках внешней страничной памяти. Внешняя страничная память является частью внешней памяти.

Ячейка (слод) – это записываемая область во внешней страничной памяти. Например на жёстком магнитном диске. Она того же размера, что и страница. Вычислительная система с 24-х разрядным адресом может иметь адресеное пространство 16777216 байт. С 23-х разрядным адресом – 4 Гб. Все программные страницы физически располагаются в ячейках внешней страничной памяти. Виртуальная память существует только, как продукт деятельности ОС функционирующей на основе совместного использования внешней и страничной памяти. Загрузить программу в виртуальную память, значит переписать несколько программных страниц из внешней страничной памяти в основную память. Если в процессе выполнения программы система обнаружит, что требуемой странице нет в реальной памяти она должна переслать копию этой страницы из внешней страничной памяти в реальную память – этот метод называется принудительным страничным обменом.

Система прерываний ЭВМ.

1.Работа центрального процессора в системе прерываний.

2.”Поле зрения” ЦП.

3.Виды систем прерывания.

4.Принцип действия системы прерывания.

5Группы прерываний.

2.Современная ЭВМ представляет собой комплекс автономных устройств, каждая из которых выполняет свой функции под управлением местного устройства управления независимо от других устройств, машины включают устройства в работу ЦП и передаёт устройству команду и все необходимое для её выполнения параметры. После начала работы устройства центральный процессор отключается от него и переходит к обслуживанию других устройств или к выполнению других функций. Для того, чтобы ЦП выполняя свою работу имел возможность реагировать на события происходящие вне его зоны, внимание, наступление, которых он не ожидает существует система прерываний ЭВМ. При отсутствии системы прерываний все заслуживающие внимания события должны находиться в поле зрения процессора. Что сильно усложняет программы и требует большой их избыточности. Кроме того поскольку момент наступления события заранее неизвестен, процессор в ожидании какого-либо события может находиться длительное время и чтобы не пропустить его появления ЦП не может откликаться на выполнение какой-либо другой работы. Такой режим работы (режим сканирования ожидаемого события)связан с большими потерями времени ЦП на ожидание. Таким образом система прерываний позволяет микропроцессору выполнять основную работу, не откликаясь на состояния сложных систем при отсутствии такой необходимости или прервать выполняемую работу и переключиться на анализ возникшей ситуации сразу после её выполнения.

Работа системной памяти проходит под управлением ЦП. Основы центрального процессора персональной ЭВМ (ПЭВМ) составляет микропроцессор, обрабатывающие устройства служащие для арифметических и логических преобразований данных. Для организации обращения к ОП и внешним устройствам и для управления ходом вычислительного процессора. В настоящее время существует большое кол-во разновидностей микропроцессоров различающихся назначением функциональными возможностями структурой и исполнением. Чаще всего наиболее существенным классификационным различием между ними является кол-во разрядов в обрабатываемой информационной единице – 8-битовые, 16-битовые, 32-битовые и др.

Арифметика логического устройства.

АЛУ выполняет арифметические и логические операции над данными. Основной частью АЛУ является операционный автомат в состав которого входят: сумматоры, счётчики, регистры, логические преобразователи и др. АЛУ каждый раз перенастраивается с выполнением очередной операции.

3.В зависимости от места нахождения источника прерываний, они могут быть разделены на внутренние (программные и аппаратурные) и внешние прерывания ((поступающие в ЭВМ от внешних источников) от принтера или модема).

4.При возникновении события требующей немедленной реакции со стороны машины ЦП прекращает обработку текущей программы и переходит к выполнению отложенной программы. Такой режим работы называется прерыванием. Каждое событие требующее прерывание сопровождается специальными сигналами, которые называются запросом прерывания, программы затребованная запросом прерывания называется обработчиком прерывания. Запросы не прерывания могут возникать из-за сбоев в аппаратуре (зафиксированных схемами контроля переполнения разрядной сетки, деления на ноль, выхода за установленные для данной программы области памяти затребованные периферийными устройствами, операции ввода/вывода, завершение этой операции ввода/вывода, или возникновение при этой операции особых условий и т.д.

5.Персональные ЭВМ IBM PC может выполнять 256 различных прерываний, каждая которых имеет свой номер – двухразрядное шестнадцатеричное число. Все прерывания делятся на 2 группы. Прерывания с номера 00h по номер 1Fh называются прерываниями базовой системы ввода/вывода. Прерывания с номера 20h по номер FFh называется прерыванием DOS. Прерывания DOS имеет более высокий уровень организации, чем прерывания BIOS они строятся на использовании модулей BIOS в качестве элементов.

Система команд микропроцессора

1. Команды пересылки данных (4 группы)

1.1 Команды пересылки данных внутри МП (MOV, PUSH, POP, XCHNG)

1.2 Команды ввода/вывода in/out.

1.3 Операции с флагами.

1.4 Операции с адресами.

2 . Арифметические команды.

2.1 Основные (+,-,*,/)

2.2 Дополнительные.

3. Логические команды.

3.1 Сдвиг, Дизъюнкция, конъюнкция, отрицание равнозначности и др.

4. Команды обработки строковых данных (пересылке, сравнение, сканирование, слияние/разделение и др.)

5. Команды передачи управления (безусловный переход, условный переход, прерывания, переход с возвратом).

    Команды управления (“нет операций”, “внутренняя синхронизация”).

Классификация вычислительных систем

1.Закономерность в процессе развития ЭВМ.

2.Термин вычислительная система.

3.Основные принципы построения закладываемые при создании вычислительной системы.

4.Структура вычислительной системы.

5.Классификация вычислительных систем.

1.Развитие средств электронной вычислительной техники строго придерживалось к классической структуре ЭВМ (структуры фон Неймана), основной на методах последовательных вычислений. Рост производительности и быстродействия.

Комплексное совершенствование ЭВМ (электронно-конструкторная база, структурно аппаратурные решения, системно программный и пользовательский алгоритмический уровень, ощутимость пределов возможностей микроэлектроники.

2.Термин вычислительной системы появился в начале по середину 60-х годов при появлении ЭВМ III-го поколения. В это время знаменовалось переходом на новую элементную базу интегральные схемы. Следователем этого явилось появление новых технических решений: разделение процессоров обработки информации и её ввода/вывода. Множественный доступ и коллективное использование вычислительных ресурсов в пространстве и во времени. Появились сложные работы ЭВМ многопользовательской и многопрограммной обработки. Под вычислительной системой (ВС) будем понимать совокупность взаимодействующих и взаимосвязывающих процессов или ЭВМ периферийного оборудования и программного обеспечения предназначенного для подготовки и решения задач пользователей. Отличительная особенность вычислительной системы по отношению к ЭВМ является наличие нескольких вычислителей реализующих параллельную обработку. Создание вычислительной системы преследует следующие основные цели: повышение производительности системы за счёт ускорения процессов обработки данных, повышения достоверности и надёжность вычислений, предоставленные пользователю дополнительных серверных услуг.

Параллелизм в вычислениях значительной степени усложняет управление вычислительным процессом. Использование технических и программных ресурсов. Эти функции выполняет ОС вычислительной системы.

1.Возможность работы в разных работах.

2.Модульность структуры технических и программных средств, что позволяет совершенствовать и модернизировать вычислительность системы без коренных их переделок.

3.Унификация и стандартизация технических и программных решений.

4.Иерархия в организации управления процессами.

5.Способ систем к адаптации, к самонастройки и к самоорганизации.

6.Обеспечение необходимым сервисам при выполнении вычислений.

Многопроцессорная вычислительной системы

Типичным представителем многопроцессорной системы с массовым параллелизмом (MPP) является суперкомпьютер nCUBE2, состоящий из мультипроцессора nCUBE2 и хост-компьютера, управляющего его работой. Мультипроцессор состоит из набора процессорных модулей (узлов) , объединенных в гиперкубовую структуру. В такой структуре процессоры размещаются в вершинах N- мерного куба (гиперкуба ), а коммуникационные каналы, соединяющие процессоры, расположены вдоль ребер гиперкуба. Общее число процессоров в гиперкубе размерности N равно 2 N . На Рис. 3 приведены гиперкубовые структуры для различного числа процессоров. Гиперкубовая архитектура является одной из наиболее эффективных топологий соединения вычислительных узлов. Основным показателем эффективности топологии многопроцессорной системы является количество шагов, требуемое для пересылки данных между двумя наиболее удаленными друг от друга процессорами. В гиперкубовой архитектуре максимальное расстояние (число шагов) между узлами равно размерности гиперкуба. Например, в системе с 64 процессорами сообщение всегда достигнет адресата не более, чем за 6 шагов. Для сравнения заметим, что в системе с топологией двумерной сетки для передачи данных между наиболее удаленными процессорами требуется 14 шагов. Кроме того, при увеличении количества процессоров в два раза, максимальное расстояние между процессорами увеличивается всего на 1. Совершенно очевидно, что для образования такой архитектуры на вычислительных узлах необходимо иметь достаточное количество коммуникационных каналов. В процессорных модулях nCUBE2 имеется 13 таких каналов, что позволяет собирать системы, состоящие из 8192 процессоров.

Физическая нумерация процессоров построена таким образом, что номера соседних узлов в двоичной записи отличаются только одним битом. Номер этого бита однозначно определяет номер коммуникационного канала, соединяющего эти процессоры. Это позволяет эффективно реализовать аппаратные коммутации между любой парой процессоров. Подкубом в гиперкубовой архитектуре называют подмножество узлов, которые, в свою очередь, образуют гиперкуб меньшей размерности. Каждый узел в массиве процессоров nCUBE2 состоит из 64-битного центрального процессора, коммуникационного процессора и оперативной памяти. Коммуникационный процессор отвечает за пересылку данных между узлами, освобождая центральный процессор от выполнения рутинных операций по приему, отправке и маршрутизации потока данных. Ниже приведены технические характеристики вычислительного комплекса nCUBE2, установленного в РГУ:

Доступ к вычислительным ресурсам nCUBE2 получают пользователи, зарегистрированные на хост-компьютере, роль которого выполняет рабочая станция SGI 4D/35 (Silicon Graphics), работающая под управлением операционной системы IRIX 4.0.5. С помощью хост-компьютера выполняется начальная инициализация системы, ее тестирование и подготовка программ для их выполнения на nCUBE2. В программное обеспечение хост-компьютера входит серверная программа, позволяющая организовать прямой доступ к вычислительным ресурсам nCUBE2 с хост-компьютеров второго уровня , в качестве которых могут выступать рабочие станции SUN. Для этого на них должно быть установлено программное обеспечение хост-компьютера.

На хост-компьютерах устанавливается среда параллельного программирования (Parallel Software Environment - PSE). PSE поставляется в трех вариантах: для операционных систем IRIX 4.0.5, SunOS и Solaris.

Архитектура вычислительных систем.

1.Архитектура вычислительных систем.

2.История появления классификации ВС.

3.Четыре основные архитектуры ВС:

3.1.Архитектура ОКОД.

3.2.Архитектура ОКМД.

3.3.Архитектура МКОД.

3.4.Архитектура МКМД.

1.Совокупность характеристик и параметров определяющих функционально-логических и структурную организацию систем. Понятие архитектуры охватывает общие принципы построения и функционирования наиболее существенные для пользователя, в которой дольше интересует возможности систем, а не деталей их технического исполнения.

Классификация ВС:

1.По назначению ВС делятся на универсальные и специализированные. Универсальные ВС предназначаются для решения самых различных задач. Специализированные ВС ориентированы на решение узкого класса задач.

2.По типу ВС различаются на многомашинные и многопроцессорные ВС. Многомашинные ВС (ММС) появились исторически первыми. При использовании ЭВМ первых поколений возникали задачи повышения производительности, надёжности и достоверности вычислений.

3.По типу ЭВМ или процессоров, используемых для построения ВС, различают однородные и неоднородные системы. В однородных системах значительно упрощаются разработка и обслуживание технических и программных средств. В неоднородных ВС комплексуемые элементы очень сильно отличаются по своим техническим и функциональным характеристикам. Обычно это связано с необходимостью параллельного выполнения многофункциональной обработки.

4.По степени территориальной разобщённости вычислительных модулей ВС делят на системы совмещённого (состредоточенного) и распределённого (разобщённого) типов.

Многопроцессорные системы относятся к системам совмещённого типа. Совмещённые и распределённые МВС сильно различаются оперативностью взаимодействия в зависимости от удалённости ЭВМ.

5.По методам управления элементами ВС различают централизированные и со смешанным управлением. Помимо параллельных вычислений, производимых элементами системы, необходимо ресурсы на обеспечение управления этими вычислениями. В централизированных ВС за это отвечает главная, или диспечерская, ЭВМ (процессор). В децентрализированных системах функции управления распределены между её элементами. В системах со смешанным управлением совмещаются процедуры централизированного и децентрализированного управления.

6.По принципу закрепления вычислительных функций за отдельными ЭВМ различают системы с жёстким и плавающим закреплением функций.

7.По режиму работы ВС различают системы, работающие в оперативном и неоперативном временных режимах.

ОКОД – включает все однопроцессорные и одномашинные варианты систем, т.е. С одним вычислением. Все ЭВМ классической структуры попадают в этот класс. Здесь параллелизм вычислений обеспечивается путём совмещения выполнения операций отдельными блоками АЛУ, а также параллельной работой устройств ввода-вывода информации и процессора.

ОКМД – предполагает создание структур векторной или матричной обработки. Системы этого типа обычно строятся как однородные, т.е. процессорные элементы входящие в систему идентичны, и все они управляются одной и той же последовательностью команд. Однако, каждый процессор обрабатывает свой поток данных. Под эту схему хорошо подходят задачи обработки матриц или векторов (массивов, задачи решения систем линейных и нелинейных управлений алгебраического и дифференциальных уравнений, задачи теории поля и др.)

В супер ЭВМ – ОКМД. В структурах данной архитектуры желательно обеспечивать соединение между процессорами соответствующие реализуемым математическим событиям. Структуры ВС этого типа по существу являются структурами специализированных super – ЭВМ.

МКОД – предполагает построение своеобразного процессорного конвейера, в котором результаты обработки передаются от одного процессора к другому по цепочке. Прототипом таких вычислений может служить схема любого производственного конвейера, в современных ЭВМ по этому принципу реализована схема совмещения операций, в которой параллельно работают различные функциональные блоки и каждый из них делает свою часть в общем цикле обработки команды.

МКМД – все процессоры системы работают со своими программами с собственным потоком команд. В простейшем случае они могут быть автономны и независимы.

Комплексирование ВС.

1.Понятие совместимости.

2.Пути передачи данных.

3.Уровень прямого управления.

4.Уровень общей оперативной памяти.

5.Уровень комплексируемых каналов ввода/вывода.

6.Уровень устройств управления внешними устройствами.

7.Уровень общих внешних устройств.

1.Для построения вычислительных систем необходимо, чтобы элементы или модули комплексируемые в систему были совместимы. Понятие совместимости имеет 3 аспекта: аппаратурный (технический), программный или информационный.

Техническая совместимость предполагает, что ещё в процессе разработки аппаратуры обеспечиваются следующие условия: 1)подключаемая друг к другу аппаратура должна иметь единые стандартные унифицированные средства соединения: кабели, число проводов в них, единое назначение проводов, разъёмы, заглушки, адаптеры, платы и т.д. 2)параметры электрических сигналов, которыми обмениваются технические устройства, тоже должны соответствовать друг к другу: амплитуды импульсов, полярность, длительность и т.д. 3)алгоритмы взаимодействия (последовательность сигналов по отдельным проводам не должны вступать в противоречие друг с другом.

2.В создаваемых вычислительных системах стараются обеспечить несколько путей передачи данных, что позволяет достичь необходимой надёжности функционирования, гибкости и адаптируемости конкретным условием работы. Эффективность обмена информации определяет сложностью передачи и возможными объёмами данных, передаваемых по каналу взаимодействия.

Машинные коды

Прямой код дворичного числа образуется из абсолютного значения этого числа и кода знака (0 - + или 1 - -) перед его старшим числовым разрядом.

A10=10 A2=1010 n=0:1010-прямой машинный код числа 10.

Обратный код дворичного числа образуется по следующему правилу. Обратный код положительных чисел совпадает с их прямым кодом. Обратный код отрицательного числа содержит единицу в знаковом разряде числа, а знающие разряды числа заменяются на инверсные, т.е. 0-заменяется 1, а 1-0.

А10=5 А2=101 [А2]4-=0:101 4=1:101

Своё название обратный код чисел получил потому, что коды цифр отрицательного числа заменены на инверсные. Наиболее важные свойства обратного кода чисел сложения положительного числа с его отрицательным значением в обратном ходе даёт машинную единицу МЕ ОN. Дополнительный код положительных чисел совпадает с его прямым кодом. Дополнительный код отрицательного числа представляет собой результат суммирования обратного кода числа с единицей младшего разряда ((2 – 1) для целых чисел) ((2) для дробных чисел).

А10-19А2=(10011)

n=oк=ДК=0:10011

А10=-13 А2=-1101

nок=ДК=1:1101

Основные свойства дополнительного кода. Сложение дополнительных кодов положительного числа с его отрицательным значением даёт машинную единицу дополнительного кода. Дополнительный код получил название потому, что представление отрицательных чисел является дополнением прямого кода чисел до машинной единицы дополнительного кода.

Модифицированные коды и обратные дворичных чисел отличаются соответственно от обратных и дополнительных кодов удвоенным значением знаковых разрядов знак + в этих кодах кодируется двумя нулевыми знаковыми разрядами, а – двумя единичными разрядами.

n=0:1001 n=1:1001

ок=0:1001 ок=1:0110

дк=0:1001 дк=1:0111

Мок=00:1001 Мок=11:0110

Мдк=00:1001 Мдк=11:0111

Программная совместимость (Soft Ware) требует чтобы программы, передаваемые из одного технического средства в другое, были правильно поняты и выполнены другим устройством.

Информационная совместимость комплексируемых средств предполагает, что передаваемые информационные массивы будут одинаково интерпретироваться стыкуемыми модулями ВС. Должны быть стандартизированы алфавиты, разрядность, форматы структура и разметка файлов, томов. В создаваемых ВС стараются обеспечить несколько путей передачи данных, что позволяет достичь необходимой надёжности функционирования, гибкости и адаптируемости к конкретным условиям работы. Эффективность обмена информацией определяется скоростью передачи и возможными объёмами данных, передаваемыми по каналу взаимодействия. Эти характеристики зависят от средств, обеспечивающих взаимодействие модулей и уровня управления процессами, на котором это это взаимодействие осуществляется сочетание различных уровней и методов обмена данными между модулями ВС наиболее плотно представлено в универсальных супер ЭВМ и больших ЭВМ, с которых сбалансировано использовались все методы достижения высокой производительности. В этих машинах предусматривались следующие уровни комплексирования:

      прямого управления (процессор-процессор);

      общей оперативной памяти;

      комплексируемых каналов ввода\вывода;

      устройств управления внешними устройствами (УВУ);

      общих внешних устройств.

На каждом из этих уровней используются специальные технические и программные средства, обеспечивающие обмен информацией.

3.Уровень прямого управления служит для передачи коротких однобайтовых приказов сообщений. Последовательность взаимодействия процессоров сводится к следующему. Процессор инициатор обмена по интерфейсу прямого управления байт – сообщения и подаёт команду прямое чтение и записывает передаваемый байт в свою память, затем принятая информация расшифровывается и по ней принимается решение. После завершения передачи прерывания скрываются и оба процессора продолжают вычисления по собственным программам следовательно уровень прямого управления не может использоваться для передачи больших массивов данных, однако оперативные взаимодействия отдельными сигналами широко используется в управлении вычислениями.

4.Является более предпочтительной для оперативного взаимодействия процессора. В этом случае ООП эффективно работает при небольшом числе обслуживаемых абонентов.

5.Уровень общей оперативной памяти предназначается для передачи больших объёмов информации между блоками оперативной памяти сопрягаемых в вычислительной системе. Обмен данными между ЭВМ осуществляется с помощью адаптера канал-канал (АКК) и команд чтения и записи. Адаптер – это устройство согласующее скорости работы сопрягаемых сигналов. Обычно сопрягаются селекторные программы (СК) каналы машин, как наиболее быстродействующие. Скорость обмена данными определяется скоростью самого медленного канала. Скорость передачи данных по этому уровню составляет несколько Мб/1сек. В ПЭВМ данному уровню взаимодействия соответствует подключение современной аппаратуры через контролёры адаптеры.

6.Предполагает использование встроенного в УВУ двухканального переключателя и команд зарезервировать и освободить. Двухканальный переключатель позволяет УВУ одной машины и селекторными каналами различных ЭВМ. По команде зарезервировать канал инициатор обмена имеет доступ через УВУ к любым накопителям на жёстких дисках и на магнитных лентах. УВУ магнитных дисках и лент совершенно различные устройства обмен канала с накопителями продолжает до полного завершения работ и получения команды освободить. Только после УВУ может подключиться к конкурирующему каналу, только такая дисциплина обслуживания требований позволяет избежать конфликтных ситуаций на 4 уровне с помощью аппаратуры передачи данных (АПД) (мультиплексоры, адаптеры, сетевые модемы) имеется возможность сопряжения с каналами связи – эта аппаратура позволяет создавать сети ЭВМ.

7.Предполагает использование общих внешних устройств. Для подключения отдельных устройств используются автономный двухканальный переключатель.

Типовые структуры вычислительных систем.

1.Структура ВС.

2.Классификация уровней программного параллелизма.

3.Улучшение классической структуры ЭВМ.

4.Многофункциональная обработка.

5.RISC CISC компьютеры.

6.VLIW компьютеры.

7.Средства реализации программного параллелизма.

1.Каждая структура вычислительной системы эффективно обрабатывает лишь задачи определённого класса, при этом необходимо, чтобы структура вычислительной системы максимально соответствовало структуре решаемых задач, только в этом случае система обеспечивает максимальную производительность универсальную структуру вычислительной системы одинаково хорошо обрабатывающей задачи любого типа не существует.

2.Классификация уровней программного параллелизма.

1.Включает в себя 7 позиций.

2.Независимые задания.

3.Отдельные части задания.

4.Программы и подпрограммы.

5.Циклы и итерации.

6.Операторы и команды.

7.Фазы отдельных команд.

Для каждого из них имеются специфические свойства параллельной обработки апробированные в различных структурах вычислительных систем. Для каждого вида параллельных работ имеются структура вычислительных средств используемых в различных системах. Верхние три уровня включающие независимые задания или части заданий и отдельные программы имеют единое средство параллельной обработки. Мультипроцессирование т.е. многопроцессорные вычислительные системы относящиеся программные циклы и итерации требуют использования векторной обработки (ОКМД). Операторы и команды выполняемые ЭВМ ориентированы на многофункциональную обработку. Параллельная обработка фаз последовательно выполняемых команд приводит к организации конвейера команд. Рассмотрим возможные структуры ВС, которые обеспечивают перечисленные виды программного параллелизма.

3.ОКОД структуры.

Данный тип архитектуры объединяет любые системы в однопроцессорном (одновременном) варианте. За 50л. развития ЭВТ классическая структура ЭВМ претерпела значительное совершенствование, однако основной принцип программного управления не был нарушен. Данная структура оказалась сосредоточенной вокруг ОП, т.к. именно цепь “процессор ОП” во многом определяет эффективную работу ПК. При выполнении каждой команды необходимо неоднократное обращение к ОП: Выбор команды, операндов, отсылка результатов и т.д. Перечислим несколько улучшений классической структуры ЭВМ ставших в настоящее время определёнными стандартами при построении новых ЭВМ:

Иерархическое построение памяти ЭВМ, появлении сверхоперативной памяти и КЭШ памяти разделения процессов ввода/вывода и обработки задач появления систем прерывания и приоритетов и т.д. В этом ряду следует рассматривать организацию конвейера последовательно выполняемых команд: Формирование адреса команды, выбор команды, формирование адресов и выбор операндов. Выполнение команды, запись результата, однако примитивная организация памяти (память одномерна и линейна) не позволяет организовать длинный и эффективный конвейер. Линейные участки современных команд, редко превышают десяток полтора последовательно выполняемых команд, поэтому конвейер часто перезапускается, что снимает производительность ЭВМ в целом.

4.Технология сверхбыстрых интегральных схем.

Многофункциональная обработка обеспечивается следующими специализированными средствами обработки умножителями, делителями, сопроцессорами или блоками десятичной арифметики. Сопроцессорами обработки графической информации и др.

5.RISC и CISC – компьютеры.

В последние годы широко используются ещё несколько модификаций классической структуры. В связи с достижением в микроэлектронике появилась возможность построения RISC компьютера. Reduced Instruction SET Computing. ЭВМ с сокращённом набором команд. ЭВМ предыдущих поколений не имели большой сверхоперативной памяти, поэтому имели достаточно сложную систему команд. CISC – в этих машинах большую долю команд составляли команды типа “память-память”, в которых операнды и результаты операций находились в оперативной памяти. Время обращения к памяти и время вычислений относились 5 к 1.

В RISC машинах с большой сверхоперативной памятью, большой удалённый вес составляет операции регистр-регистр и отношение времени обращения к памяти по времени вычислений составляет 2 к 1, поэтому в RISC машинах основу системы команд составляет наиболее употребительные «короткие операции» типа алгебрического сложения. Сложные операции выполняются, как подпрограммы состоящие из простых операций – это позволяет значительно упростить внутреннюю структуру процессора, уменьшить фазы дробления конвейерной обработки и увеличить частоту работу конвейера. Недостатки такой системы усложнения процедур обмена данными между регистрами и сверхоперативной памяти и КЭШ памяти с оперативной памятью.

Very Large Instruction Words.

Ещё одной классической модификацией структуры ЭВМ является VLIW. ЭВМ с очень длинным командным словом. ЭВМ этого типа выбирает из памяти супер команду включающую в себя несколько команд. VLIW компьютеры могут выполнять супер скалярную обработку т.е., одновременно выполнять 2 или более команд. В целом ряде структур супер ЭВМ использовалась эта идея.

ОС микропроцессорных систем и локально-вычислительных систем.

Центральное место в структуре ПО занимает ОС. ОС – система программ предназначенная для обеспечения определённого уровня эффективности цифровой вычислительной системы за счёт автоматизированного управления её работой и предоставляемого пользователем набора услуг (ГОСТ – 15971-84). Программные компоненты ОС обеспечивают управление вычислениями и реализует такие функции, как планирование ресурсов управлением ввода-вывода информации управлением данными. Объём ОС и число составляющих её программ в значительной степени определяются типом используемых ЭВМ. Сложностью режимов работы ЭВМ и вычислительных систем составом технических средств и т.д. Применение ОС имеет следующие цели: увеличение пропускной способности ЭВМ – увеличение общего объёма работы выполняемого ЭВМ в единицу времени;

2)уменьшение времени реакции системы, т.е. сокращение интервала времени между моментами поступления заданий в ЭВМ и моментами получения результатов.

3)контроль работоспособности технических и программных средств.

4)помощь абонента и оператора при использовании ими технических и программных средств, облегчение их работы.

5)управление программами и данными в ходе вычисления.

6)обеспечение адаптации ЭВМ, её структурноё гибкости заключающейся способности изменятся, наполнятся новыми техническими и программными средствами.

Любая ОС имеет приспособление классам решаемых пользователями задач и конфигурации средств включаемых в систему.

1.Определение ОС.

2.ОС – как расширенная машина.

3.ОС – как система управления ресурсами.

4.Сетевые операционные системы.

1)ОС в наибольшей степени определяет облик всей ВС в целом, несмотря на это пользователи активно использующие вычислительную технику часто затрудняются дать определение ОС, т.к. ОС выполняет по существу 2 малосвязанные друг с другом функции: 1)обеспечение пользователю-программисту удобств по средствам предоставления для него расширенной машины, 2)повышение эффективности использования ПК путём рационального управления его ресурсов.

2)Программа, которая скрывает от программиста все реалии аппаратуры и предоставляет возможность простого удобного просмотра указанных файлов чтения или записи называется ОС. Точно также, как ОС ограждает программиста от аппаратуры дискового накопителя и предоставляет ему простой файловый интерфейса. ОС берёт на себя все малоприятные дела связанные с обработкой прерывания управлением таймерами и ОП, а так же др. низкоуровневые проблемы. С этой точки зрения функцией ОС является предоставление пользователю некоторой расширенной или виртуальной машины, которую легче программировать и с которой легче работать, чем непосредственно с аппаратурой составляющей реальную машину.

3)Идея о том, что ОС прежде всего система обеспечивающая удобный интерфейс пользователю соответствует рассмотрению сверху вниз. Другой взгляд снизу вверх об ОС, как о некотором механизме управляющим всеми частями сложной системы. Современные вычислительные системы состоят из процессоров, таймеров дисков накопителей сетевой коммуникационной аппаратура принтеров и др. устройств в соответствии со вторым подходом функцией ОС является распределение ресурсов между процессорами, памятью, устройствами и данными между процессорами конкурирующими за эти ресурсы. ОС должна управлять всеми ресурсами вычислительной машины таким образом, чтобы обеспечить максимальную эффективность её функционирования. Критериями эффективности может быть пропускная способность или реактивность системы. Управление ресурсами включает решение 2 общих независящих от типа ресурсов задач:

1)планирование ресурсов – т.е. определение кому, когда, а для делимых ресурсов и в каком количестве необходимо выделить данные ресурсы;

2)отслеживание состояния ресурса, т.е. содерживание оперативной информации занят или не занят ресурс, а для делимых ресурсов – какое количество ресурсов уже распределено, а какое свободно. Для решения этих общих задач управления ресурсами разные ОС используют различные алгоритмы, что в конечном счёте и определяет их облик в целом, включая характеристики производительности, область применения и пользовательский интерфейс. Так, например, алгоритм управления ресурсами в значительной степени определяет – является ли ОС системой разделения времени, системой пакетной обработки или системой реального времени.

Классификация сетей. Телекоммуникационные сети.

Телекоммуникационная вычислительная сеть (ТВС) - это сеть обмена и распределённой обработки информации, образуемая множеством взаимосвязанные абонентские систем и средствами связи. Средство передачи и обработки информации ориентированы в ней на коллективное использование общесетевых ресурсов, аппаратных, информационных, программных.

Абонентская система – это совокупность ЭВМ программного обеспечения периферийного оборудования, средств связи с коммуникационной подсетью вычислительной сети выполняющих прикладные процессы.

Коммуникационная подсеть или телекоммуникационная система – представляет собой совокупность физической среды передачи информации аппаратурных и программных средств обеспечивающие взаимодействие абонентской системы.

Прикладной процесс – это различные процедуры ввода хранения, обработки и выдачи информации выполняемые в интересах пользователей и описываемые прикладными программами.

Умножаемые двоичных чисел наиболее просто реализуют в прямом коде. Произведение получатся путём сложения частных произведений представляющих собой разряды множимого сдвинуться влево в соответствии с позициями разрядов множителя. Частные произведения формируются путём сложения знаковых разрядов сомножителей. Возможные переносы из знакового разряда игнорируются.

Операции деления, как и в десятичной арифметике являются обратной операцией умножения.

Классификация ТВС также наиболее характерны функциональные информационные структурные признаки.

1.По степени территориальной рассредоточенности элементов в сети (абонентских систем, узлов связи) различают глобальные (государственные), региональные и локальные вычислительные сети (ГВС, РВС, ЛВС).

2.По характеру реализуемых функций делятся на вычислительные (обработка информации), информационные (для получения справочных данных по вопросам пользователей), информационно-вычислительные (смешанные), в которых в определённом непостоянном соотношении выполняются вычислительные и информационные функции.

3.По способу управления ТВС делятся на сети с централизованным (в сети имеется один или несколько управляющих органов) децентрализованным (каждая автономная абонентская система имеет средство для управления в сети) и смешенным управлением в которых в определённом сочетании реализованные принципы централизованного и децентрализованного управления.

Арифметические операции над числами с фиксированной точкой.

1. Сложение и вычисление.

Операция вычитания приводится к операции сложения путём преобразования чисел в обратный или дополнительный код. Пусть числа а и b>=0, тогда операции алгебрического сложения выполняется в соответствии с таблицей преобразования кодов при алгебрическом сложении.

При выполнении сложения цифр необходимо соблюдать следующие правила:

1.Слагаемые должны иметь одинаковое число разрядов, для выравнивания разрядной сетки слагаемых можно дописывать незначащие нули слева к целой части числа и незначащие нули справа в дробной части числа.

2.Знаковые разряды чисел участвуют в сложении также, как и значащие.

3.Необходимые преобразования кодов производятся с изменением знаков чисел приписанные незначащие нули изменяют своё значение при преобразованиях по общему правилу.

4.При образовании единицы переноса из старшего переноса разряда в случае использования обратного кода эта единица складывается с младшим числовым разрядом. При использовании дополнительного кода единицы переноса теряется, в знак результата формируется автоматически. Результата представляется в том ходе, в котором представлены исходные слагаемые.

При сложении чисел в обратном и дополнительном коде были получены переносы в знаковый разряд и из знакового разряда. В случае обратного кода перенос из знакового разряда требует дополнительного прибавления единицы младшего разряда, в случае дополнительного кода этот перенос игнорируется.

4)Сетевые ОС.

Сетевая ОС составляет основу любой вычислительной сети. Под сетевой ОС понимается совокупность ОС отдельных ПК взаимодействующих с целью обмена сообщениями и разделение ресурсов по единым правилам – протоколы. Вузком смысле сетевая ОС это ОС отдельного ПК обеспечивающая ему возможность работать в сети.


В сетевой ОС, отдельной клиентской машины, можно выделить несколько частей:

1.средства управления локальными ресурсами ПК: функции распределения ОП между процессами, деспетиризация процессов, функции управления переферийными устройствами и др. функции управления ресурсами локальной ОС.

2.средство предоставления собственных ресурсов и услуг в общее пользование.

Эти средства обеспечивают например блокировку файлов и папок и записей, что необходимо для совместного использования, ведения справочников имён сетевых ресурсов, обработка запросов удалённого доступа собственной файловой системе и базе данных и управление очередями запросов удалённых пользователей своим периферийным устройством.

3.средство запроса доступа к удалённым ресурсам и использование – клиентская часть ОС. Эта часть выполняет распознавание и перенаправление в сеть запросов удалённым ресурсам от приложений и пользователей, при этом запрос поступает от приложения в локальной форме.

Системная память

1. Иерархический принцип построения и управления структуры ЭВМ.

2. Пирамидальный принцип построения памяти современных ЭВМ.

3. Память первого уровня.

4. КЭШ память и память блокнотного типа.

6. Управление памятью программы ОС.

1. Иерархический принцип построения и управления характерен не только для структуры ЭВМ в целом, но и для отдельных её подсистем например: по этому же принципу строится система памяти ЭВМ.

2. С точки зрения пользователя желательно иметь в ЭВМ оперативную память большой информационной ёмкости и высокого быстродействия однако одноуровневые построения памяти не позволяет одновременно удовлетворять этим двум противоположным требованиям. Память современных ЭВМ строится по многоуровневому пирамидальному принципу.

3. В состав процессоров может входить сверх оперативное запоминающее устройство небольшой ёмкости образования несколькими десятками регистров с быстрым временем доступа (единицы - нана секунды). Здесь обычно хранятся данные непосредственно используемые в обработке.

4. Следующий уровень образует КЭШ память или память блокнотного типа. Она представляет собой буферное запоминающее устройство предназначенное для хранения активных страниц объёмом десятки и сотни килобайт. Время обращения к данным составляет 10-20 Нс при этом может использоваться ассоциативная выборка данных. КЭШ память, как долее быстродействующее запоминающее устройство предназначается для ускорения выборки команд программ и обрабатываемых данных. Сами же программы пользователей и данные к ним размещаются в оперативном запоминающем устройстве (ёмкость – миллионы машинных слов, время выборки до 100 Нс).

5. Часть машинных программ обеспечивающих автоматическое управление вычислениями и используемых наиболее часто может размещаться в постоянном з/у (ПЗУ). На более низких уровнях иерархии находятся внешние запоминающиеся устройства магнитных носителях: на жёстких и гибких магнитных дисках, магнитных лентах, магнитно-оптических дисках и др. Их отличает наиболее низкое быстродействие и очень большая ёмкость.

6. Организация заблаговременного обмена информационными потоками между ЗУ различных уровней при децентрализованном управлении или позволяет рассматривать иерархию памяти, как единицу абстрактную кажущуюся (виртуальную) память, согласованная с работой всех уровней обеспечивается под управлением программ ОС. Пользователь имеет возможность работать с памятью на много превышающей ёмкость ОЗУ. Децентрализация управления и структуры ЭВМ позволило перейти к более сложным многопрограммным (мультипрограммным) режимам. При этом в ЭВМ одновременно обрабатывается несколько программ пользователей.

Технология сверхбыстрых интегральных схем.

При рассмотрении структуры любой ЭВМ обычно проводят её детализацию, как правило в структуре ЭВМ выделяют следующие структурные элементы: узлы, блоки и элементы. Такая детализация соответствует вполне определённым операциям преобразования информации заложенных в программе пользователя. Нижний уровень обработки реализует элементы, каждый элемент предназначается для обработки единичных электрических сигналов соответствующих битам информации. Узлы обеспечивают одновременную обработку группы сигналов информационных слов. Блоки реализуют некоторую последовательность в обработке информационных слов. Функционально обособленную часть Машиных операций (блоки выборки команд, блоки записи чтения и т.д.) Устройство предназначается для выполнения отдельных машинных операций и их последовательность. В современных вычислительных машинах всё строится на комплексах (системах), интегральных схем (ИС). Электронная микросхема называется интегральной, если её компоненты и соединения между ними выполнено в едином технологическом цикле, на едином основании и имеют общую, единую герметизацию и защиту от внешних воздействий и повреждений. Каждая микросхема представляет собой миниатюрную электронную схему сформированную послойно в кристалле проводника. В состав микропроцессорных блоков наборов включаются различные типы микросхем, но все они должны иметь единый тип межмодульных связей, оснований не стандартизации параметров сигналов взаимодействии (амплитуда, полярность, длительность импульсов и т.п.) Основу набора обычно составляют большие интегральные схемы (БИС) и СБИС. На очереди следует ожидать появление ультро большие интегральные схемы (УБИС), кроме них обычно используются микросхемы с малой и средней степенью интеграции (СИС). Функционально микросхемы могут соответствовать устройству, узлу или блоку, но каждая из них состоит из комбинаций простейших логических элементов реализующих функции формирования, преобразования и запоминания сигналов.

Выполнение на ЭВМ вычислительных операций.

Системы счисления называется способ изображения чисел с помощью ограниченного набора символов имеющих определённые количественные значения. Различают позиционные и непозиционные системы счисления. В позиционных каждая цифра числа имеет определённый вес, зависящий от позиции цифры в последовательности изображающей число. Позиция цифры называется разрядом; в позиционной системе счисления любое число можно представить в виде

Аn=аm-1·am-2·…·a0·a-1·a-2·...·a-k=am-1·N

Ai-ая – цифра числа.

k – количество цифр в дробной части числа.

m – количество цифр в части числа.

N – основание системы счисления.

Во всех современных ЭВМ для представления числовой информации используется двоичная система счисления. Это обусловлено: 1) более простой реализацией алгоритмов выполнения арифметических и логических операций. 2)более надёжной физической реализацией основных функций, т.к. они имеют всего два состояния 0 и 1. 3) экономичностью аппаратурной реализацией всех схем ЭВМ. Кроме двоичной системы счисления широкое распространение получили произведения системы.

{0;1} {0;1;2;3;4;5;6;7;}

Двоично-десятичные представления десятичных чисел

{0;1;2;3;4;5;6;7;8;9;}

Перевод дробных чисел.

Целое число с основанием Ni переводится в систему с основанием N2 путём последовательного деления An1 на основание N2 – до получения остатка. Полученное частное следует делить на основание N2 и этот процесс надо повторять до тех пор, пока частное не станет меньше делителя. Полученные остатки от деления и последнее частое записывается в обратном порядке полученному при делении; сформированное число и будет являться числом с основанием N2.

Дробное число с основанием N1 переводится в систему счисления путём последовательного умножения. An1 на основание N2. При каждом умножении целая часть произведения берётся в виде очередной цифры соответствующего ряда, а оставшаяся часть принимается за новое множимое. Число умножений определяет разрядность полученного результата, представляющего число An1 в системе счисления A10=0,625.

Процессор ввода/вывода

1.Определение операции ввода/вывода.

2.Проблемы появляющиеся при разработке систем ввода/вывода ЭВМ.

3.Стандартизация интерфейсов ввода/вывода.

4.Концепция виртуальных устройств.

5.Понятие интерфейса.

    Вычислительные машины помимо процесса основной памяти образующих её ядро содержит многочисленные периферийные устройства (ПУ), внешние запоминающие устройства (ВЗУ) и УВВ. Передачи информации с периферийного устройства в ЭВМ называется операцией ввода, передачей из ЭВМ в ПУ – операцией вывода.

    При разработке систем ввода/вывода ЭВМ особое внимание обращается для решения следующих проблем: должна быть обеспечена возможность реализации машин с переменным составом оборудования (машин с переменной конфигурацией), для объективного и высоко производного оборудования в ЭВМ должны реализовываться одновременная работ процессора над программами и выполнение периферийными устройствами процессов ввода/вывода, необходимо упростить для пользователя и стандартизировать программирование операции ввода/вывода, обеспечить независимость программирования ввода/вывода от особенности того или иного периферийного устройства. Необходимо обеспечить автоматизированное распознавание и реакцию ядра ЭВМ на многообразий ситуаций возникающих в периферийных устройствах (Готовность устройства, отсутствие носителя, различные нарушения нормальной работы и др.)

    Стандартизация интерфейсов ввода/вывода привела и возможность гибко изменять конфигурацию вычислительных машин (количество и состав внешних устройств) расширять комплект ЭВМ за счёт подключения новых устройств.

    Затем появилась концепция виртуальных устройств позволяющая размещать различные типы ЭВМ и операционные системы. Совместимость распространилась и на работу машин разной конфигурации (можно использовать соответствующее программное обеспечение и при физическом отсутствии необходимых устройств). Изменился принцип работы при отсутствии печатающих устройств файлы направлялись в виртуальное устройство, где и накапливались, а реально распечатывались на другой машине.

В общем случае для организации проведения обмена данными между двумя устройствами требуются специальные устройства: 1.специальные управляющие сигналы и их последовательности, 2.устройство сопряжения, 3. линии связи, 4. программы реализующие обмен. Весь этот комплекс линий и шин сигналов электронных схем алгоритмов и программ, предназначенных для осуществления обмена информации, называется – интерфейсом.

Список литературы:

1. Сыромятников В.С. Имитационное моделирование транспортной системы производственного участка. Автоматизация и современные технологии. 1998. № 1.

2. Кравченко В.А., Бураков С.Б. Объектно-продукционная модель знаний для управления в реальном режиме времени производственными и организационными комплексами. Приборы и системы управления. 1997. № 5.

3. Трахтенгенрц Э.А. Компьютерный анализ в динамике принятия решений. Приборы и системы управления. 1997. № 1.

4. Сабинин О.Ю., Зверев В.В. Символьная имитационное моделирование технических систем. Приборы и системы управления. 1997. №3.

5. Загидуллин Р.Р. Комплексная математическая модель оперативно-календарного планирования в гибких комплексах механической обработки./Автоматизация и современные технологии. 1999. № 9.