История эвм 2 поколения

04.02.2019

Новрузлу Эльнура 10 а

1. Электронно-вычислительная машина (ЭВМ)

2.

2.1. I поколение ЭВМ

2.2. II поколение ЭВМ

2.3. III поколение ЭВМ

2.4. IV поколение ЭВМ

2.5. V поколение ЭВМ

3. Поколение ЭВМ (таблица)

Список использованной литературы



Эти компьютеры были оснащены регистрами, в которых нити символов заканчивались специальным символом, обозначенным как знак. Технологическая цепочка была ориентирована и инструкция Репертуар машины - практически все инструкции, содержащихся в дополнении к опкоду и адресу одного из операндов, что также несколько необычно, потому что сегодня мы больше привыкли к тому, что инструкции работы с регистрами, а не непосредственно с местом в памяти.

По сравнению с предыдущей моделью скорость обработки данных увеличилась почти в семь раз, а объем памяти, по крайней мере, удвоился. К этому компьютеру можно подключить большое количество внешних устройств, от считывателя перфокарт и наклейки для перфорации, через память барабанов или магнитные стримеры на принтеры.

1. ПОКОЛЕНИЕК ЭВМ

Поколение

Годы

Элементная база

Быстродействие

Объем ОП

Устройства ввода-вывода

Программное обеспечение

Десять лет назад, когда он стоял дома, он был признаком современности - сегодня в каждом доме есть несколько человек, и мы не можем представить себе жизнь без них. В настоящее время компьютеры развиваются настолько быстро, что каждые несколько лет мы заменяем наше оборудование новым, потому что старый едва ли не запишет.

Как часто мы обмениваемся компьютером?

Этот вопрос не имеет однозначного ответа в смысле времени. Заядлый игрок скажет, что каждый год и непрофессионал, который рассматривает только фейсбук, скажет, что раз в 7-8 лет. Прежде всего, мы обмениваемся оборудованием, когда оно оказывается слишком слабым для повседневного использования или просто ломается. Наблюдая за друзьями, я, к сожалению, чаще смотрю на биржи по последней причине, что не является хорошим показателем долговечности оборудования.

Примеры ЭВМ

Электронная лампа

10-20 тыс. операций в 1 с.

2 Кбайт

Перфоленты

Перфокарты

Машинные коды

UNIVAC, МЭСМ, БЭСМ, СТРЕЛА

c 1955

Настольный компьютер или ноутбук?

Первоначально они были настольными компьютерами, но в течение нескольких лет ноутбуки захватили эстафету. Тем не менее, настольный компьютер по-прежнему обладает многими преимуществами, которых нет у ноутбуков, и наоборот. Что же тогда выбрать? В моем случае это выглядит так.

Некоторые действия не могут быть выполнены на планшете, или это просто не удобно. Из-за большого просмотра экрана Интернет более удобен, чем на смартфоне, а иногда даже может заменить устройство чтения электронных книг. Звонок, обмен текстовыми сообщениями, получение электронной почты, прослушивание музыки. Настольный компьютер - основной инструмент работы. . Поскольку вы уже знаете, что нужно, как покупать, а не переплачивать?

Транзистор

2 – 32 Кбайт

«Традис»

БЭСМ -6

c 1966

Интегральная схема (ИС)

1-10 млн. операций в 1 с.

64 Кбайт

Сколько стоит используемый компьютер?

Взгляд - во многих случаях покупка подержанного оборудования - лучшее решение, чем покупка ножниц из магазина. Вот преимущества и недостатки покупки подержанного оборудования. Низкая цена - электроника быстро теряют свою ценность, но, тем не менее, некоторые модели ноутбуков и компонентов бластера по-прежнему предлагают достойную производительность - часто сравнимую с самыми дешевыми новыми устройствами, которые по-прежнему в 2-3 раза дороже. Старые, но более качественные компоненты во многих случаях по-прежнему обеспечивают удовлетворительную производительность, а некоторые также менее экстренные. Если вы посмотрите на ноутбуки на несколько сотен, выясняется, что большинство из них - бизнес-модели с компонентами, которые хороши для своего времени. Через несколько месяцев выяснилось, что эта модель характеризуется высокой частотой отказов и не так легко рекомендуется. Привлекательные матрицы. Существует очень большая группа людей, которые имеют «фетиш» о матовых умирающих. Способность искать «жемчуг» - будь то данная модель - это жемчужина или нет, мы учимся не в день выпуска, а через некоторое время на рынке. Это относится к различным устройствам, но в основном это касается компонентов центрального блока. Поврежденный корпус - это в основном относится к компьютерам, продаваемым трейдерами. Плохая батарея - если вы покупаете используемый ноутбук, в большинстве случаев аккумулятор подходит только для замены. В то время как в случае продаж частными лицами существуют модели с рабочей батареей, поэтому компании часто обветшали.

  • Компоненты более высокого качества.
  • Проверенные модели.
  • Они часто находятся в трагическом визуальном состоянии.
  • Скрытые дефекты - иногда у оборудования есть скрытые дефекты.
Мой вердикт - это определенная команда для покупки деталей, используемых в случае настольных компьютеров и ноутбуков.

Многотерминальные системы

Операционные системы

БЭСМ -6

c 1975

1-100 млн. операций в 1 с.

1-64 Кбайт

Сети ПЭВМ

Базы и банки данных

Сколько стоит используемый ноутбук или настольный компьютер? Для этого вам нужно добавить цену монитора. Обновление. Чтобы проиллюстрировать масштаб преимуществ, давайте посмотрим, сколько дешевого нового ноутбука и сколько стоит тот, который соответствует используемому ноутбуку около 800 злотых.

В случае нового ноутбука он должен отвечать следующим минимальным требованиям. Есть несколько моделей на рынке, которые дешевле и не отвечают этим требованиям, но это абсолютный минимум, с которым должен встретиться современный персональный компьютер.

Корнет

УКНЦ

с 90-х годов 20 в.

Экспертные системы

Скачать:

Предварительный просмотр:

МБОУ г. Астрахани СОШ № 52

РЕФЕРАТ на тему:

«ЭЛЕКТРОННО-ВЫЧИСЛИТЕЛЬНАЯ МАШИНА»

Черный список источников питания

Цена: около 790 злотых. К сожалению, все имеет свои преимущества и недостатки. В эту категорию входят, в частности, 4 типа используемой электроники. Мы не знаем, насколько это было использовано, поэтому неизвестно, как долго он будет использоваться. Блоки питания черного списка - если вы покупаете блок питания на центральном блоке, а бренд находится в этом списке или его нет в списке - не покупайте. Вы не будете загораться без электростанции.

  • Устройства с «проблемами» - если есть проблема с устройством, то мы не покупаем.
  • Неизвестно, что это за неудача и сколько стоит его удалить.
В этом фрейме время от времени вы найдете новое интересное банковское продвижение.

Подготовила

Ученица 10 а класса

Новрузлу Эльнура

Проверила учитель по информатике и ИКТ

Комиссарова И.М.

г. Астрахань, 2013

Стр.

  1. Электронно-вычислительная машина (ЭВМ) 3
  2. Электронный этап развития вычислительной техники
  1. I поколение ЭВМ 3
  2. II поколение ЭВМ 4-5
  3. III поколение ЭВМ 5-7
  4. IV поколение ЭВМ 7-8
  5. V поколение ЭВМ 8-10
  1. Поколение ЭВМ (таблица) 11
  2. Список использованной литературы 12
  1. ЭЛЕКТРОННО-ВЫЧИСЛИТЕЛЬНАЯ МАШИНА (ЭВМ)

Электронно-вычислительная машина (ЭВМ) - быстродействующие вычислительные машины, решающие математические и логические задачи с большой точностью при выполнении в секунду несколько десятков тысяч операций. Техническая основа ЭВМ - электронные схемы. В ЭВМ есть запоминающее устройство (память), предназначенное для приема, хранения и выдачи информации, арифметическое устройство для операций над числами и устройство управления. Каждая машина имеет определенную систему команд.

Промоушн позволяет вам собрать ваучер стоимостью 400 злотых за божья коровка, в обмен на выполнение условий. Основными условиями акции являются. Если у вас есть какие-либо вопросы, обратите внимание на запись - поделитесь ими в комментарии. Новая система также была оснащена движком в первый раз, позволяя шифровать все данные на каждом этапе их обработки и хранения, исходя из приложений, облачных сервисов и баз данных.

Шифрование данных в эпоху облачных решений. Согласно недавнему исследованию, шифрование данных является ключевым фактором, защищающим предприятия от утечки информации и потерь, возникающих в результате такого события. Однако на уровне корпоративных и облачных центров обработки данных шифрование часто упускается из виду, поскольку существующие криптографические решения замедляют работу систем, а их внедрение и управление требуют больших финансовых затрат. В результате за сегодня зашифровывается только около 2% корпоративных данных, а для данных с мобильных устройств этот процент достигает 80%.

  1. ЭЛЕКТРОННЫЙ ЭТАП РАЗВИТИЯ ВЫЧИСЛИТЕЛЬНОЙ ТЕХНИКИ
  1. I поколение ЭВМ

Принято считать, что первое поколение ЭВМ появилось в ходе Второй мировой войны после 1943 года, хотя первым работающим представителем следовало бы считать машину V-1 (Z1) Конрада Цузе, продемонстрированную друзьям и Гг родственникам в 1938 году. Это была первая электронная (построенная на самодельных аналогах реле) машина, капризная в обращении и ненадёжная в вычислениях. В мае 1941 года в Берлине Цузе представил машину Z3, вызвавшую восторг у специалистов. Несмотря на ряд недостатков, это был первый компьютер, который, при других обстоятельствах, мог бы иметь коммерческий успех. Однако первыми ЭВМ считаются английский Colossus (1943 г.) и американский ENIAC (1945 г.). ENIAC был первым компьютером на вакуумных лампах.

За последние 4 года, всего за 9 миллиардов записей, потерянных или украденных, только 4% были зашифрованы. Сегодня стандартная практика заключается в том, чтобы зашифровать небольшие части данных один раз, при этом большой объем работы по выбору отдельных полей.

В крупных организациях они подвергаются хакерским атакам, когда они находятся в кеше во время обработки. Он работает на основе немедленных реакций на любые попытки кражи со взломом - ключи автоматически аннулируются, после чего они воспроизводятся, когда среда снова становится безопасной. Эти возможности распространяются не только на сами мейнфреймы, но и на системы хранения и серверы в облаке.

Характерные черты

  • Элементная база – электронно-вакуумные лампы .
  • Соединение элементов – навесной монтаж проводами .
  • Габариты – ЭВМ выполнена в виде громадных шкафов .
  • Быстродействие – 10-20 тыс. операций в секунду .
  • Эксплуатация – сложная из-за частого выхода из строя электронно-вакуумных ламп.
  • Программирование – машинные коды .
  • Оперативная память – до 2 Кбайт .
  • Ввод и вывод данных с помощью перфокарт, перфолент .
  1. II поколение ЭВМ

Второе поколение ЭВМ – это переход к транзисторной элементной базе, появление первых мини-ЭВМ. Получает дальнейшее развитие принцип автономии – он реализуется уже на уровне отдельных устройств, что выражается в их модульной структуре. Устройства ввода-вывода снабжаются собственными УУ (называемыми контроллерами), что позволило освободить центральное УУ от управления операциями ввода-вывода. Совершенствование и удешевление ЭВМ привели к снижению удельной стоимости машинного времени и вычислительных ресурсов в общей стоимости автоматизированного решения задачи обработки данных, в то же время расходы на разработку программ (т.е. программирование) почти не снижались, а в ряде случаев имели тенденции к росту. Таким образом, намечалась тенденция к эффективному программированию, которая начала реализовываться во втором поколении ЭВМ и получает развитие до настоящего времени. Начинается разработка на базе библиотек стандартных программ интегрированных систем, обладающих свойством переносимости, т.е. функционирования на ЭВМ разных марок. Наиболее часто используемые программные средства выделяются в ППП для решения задач определенного класса. Совершенствуется технология выполнения программ на ЭВМ: создаются специальные программные средства - системное ПО. Цель создания системного ПО – ускорение и упрощение перехода процессором от одной задачи к другой. Появились первые системы пакетной обработки, которые просто автоматизировали запуск одной программ за другой и тем самым увеличивали коэффициент загрузки процессора. Системы пакетной обработки явились прообразом современных операционных систем, они стали первыми системными программами, предназначенными для управления вычислительным процессом. В ходе реализации систем пакетной обработки был разработан формализованный язык управления заданиями, с помощью которого программист сообщал системе и оператору, какую работу он хочет выполнить на вычислительной машине. Совокупность нескольких заданий, как правило, в виде колоды перфокарт, получила название пакета заданий. Этот элемент жив до сих пор: так называемые пакетные (или командные) файлы MS DOS есть не что иное, как пакеты заданий (расширение в их имени bat является сокращением от английского слова batch, что означает пакет). К отечественным ЭВМ второго поколения относятся Проминь, Минск, Раздан, Мир.

Теперь оценка соответствия хранилища данных применимым правовым нормам потребует меньше времени, а также уменьшит его затраты. Постановление будет налагать на них обязательство сообщать о случаях утечки данных в регулирующие органы в течение 72 часов после мероприятия. Организации также могут получить штрафы в размере до 4% от глобального дохода, если данные не зашифрованы и ключи защищены.

Система транзакций для облачных вычислений. Вопреки тому, что сторонники последних, большинство мобильных технологий пытаются продвигаться, настольные компьютеры по-прежнему являются очень динамичным и инфекционным отделом ИТ. Машины такого типа широко используются в различных областях: офисная работа, сложные графические и расчетные расчеты или как машины для новейших игр.

Характерные черты

  • Элементная база – полупроводниковые элементы (транзисторы) .
  • Соединение элементов – печатные платы и навесной монтаж .
  • Габариты – .
  • Быстродействие – 100-500 тыс. операций в секунду .
  • Эксплуатация – вычислительные центры со специальным штатом обслуживающего персонала, появилась новая специальность – оператор ЭВМ.
  • Программирование – на алгоритмических языках, появление ОС .
  • Оперативная память – 2 – 32 Кбайт .
  • Введен принцип разделения времени .
  • Введен принцип микропрограммного управления .
  • Недостаток – несовместимость программного обеспечения .
  1. III поколение ЭВМ

Разработка в 60-х годах интегральных схем - целых устройств и узлов из десятков и сотен транзисторов, выполненных на одном кристалле полупроводника (то, что сейчас называют микросхемами) привело к созданию ЭВМ 3-го поколения. В это же время появляется полупроводниковая память, которая и по сей день используется в персональных компьютерах в качестве оперативной. Применение интегральных схем намного увеличило возможности ЭВМ. Теперь центральный процессор получил возможность параллельно работать и управлять многочисленными периферийными устройствами. ЭВМ могли одновременно обрабатывать несколько программ (принцип мультипрограммирования). В результате реализации принципа мультипрограммирования появилась возможность работы в режиме разделения времени в диалоговом режиме. Удаленные от ЭВМ пользователи получили возможность, независимо друг от друга, оперативно взаимодействовать с машиной. В эти годы производство компьютеров приобретает промышленный размах. Пробившаяся в лидеры фирма IBM первой реализовала семейство ЭВМ - серию полностью совместимых друг с другом компьютеров от самых маленьких, размером с небольшой шкаф (меньше тогда еще не делали), до самых мощных и дорогих моделей. Наиболее распространенным в те годы было семейство System/360 фирмы IBM. Начиная с ЭВМ 3-го поколения, традиционным стала разработка серийных ЭВМ. Хотя машины одной серии сильно отличались друг от друга по возможностям и производительности, они были информационно, программно и аппаратно совместимы. Например, странами СЭВ были выпущены ЭВМ единой серии («ЕС ЭВМ») «ЕС-1022», «ЕС-1030», «ЕС-1033», «ЕС-1046», «ЕС-1061», «ЕС-1066» и др. Производительность этих машин достигала от 500 тыс. до 2 млн. операций в секунду, объём оперативной памяти достигал от 8 Мб до 192 Мб. К ЭВМ этого поколения также относится «IВМ-370», «Электроника - 100/25», «Электроника - 79», «СМ-3», «СМ-4» и др. Для серий ЭВМ было сильно расширено программное обеспечение (операционные системы, языки программирования высокого уровня, прикладные программы и т.д.). Невысокое качество электронных комплектующих было слабым местом советских ЭВМ третьего поколения. Отсюда постоянное отставание от западных разработок по быстродействию, весу и габаритам, но, как настаивают разработчики СМ, не по функциональным возможностям. Для того, чтобы компенсировать это отставание, в разрабатывались спецпроцессоры, позволяющие строить высокопроизводительные системы для частных задач. Оснащенная спецпроцессором Фурье-преобразований СМ-4, например, использовалась для радиолокационного картографирования Венеры. Еще в начале 60-х появляются первые миникомпьютеры - небольшие маломощные компьютеры, доступные по цене небольшим фирмам или лабораториям. Миникомпьютеры представляли собой первый шаг на пути к персональным компьютерам, пробные образцы которых были выпущены только в середине 70-х годов. Известное семейство миникомпьютеров PDP фирмы Digital Equipment послужило прототипом для советской серии машин СМ. Между тем количество элементов и соединений между ними, умещающихся в одной микросхеме, постоянно росло, и в 70-е годы интегральные схемы содержали уже тысячи транзисторов. Это позволило объединить в единственной маленькой детальке большинство компонентов компьютера - что и сделала в 1971 г. фирма Intel, выпустив первый микропроцессор, который предназначался для только-только появившихся настольных калькуляторов. Этому изобретению суждено было произвести в следующем десятилетии настоящую революцию - ведь микропроцессор является сердцем и душой современного персонального компьютера. Но и это еще не все - поистине, рубеж 60-х и 70-х годов был судьбоносным временем. В 1969 г. зародилась первая глобальная компьютерная сеть - зародыш того, что мы сейчас называем Интернетом. И в том же 1969 году одновременно появились операционная система Unix и язык программирования С ("Си"), оказавшие огромное влияние на программный мир и до сих пор сохраняющие свое передовое положение.

Хотя мы уже имели дело до сих пор, настало время для следующей модели. Причина этого проста: производитель представил новейшее поколение своих низковольтных процессоров и, следовательно, это был также поворот нового выпуска микрокомпьютера компании. Как он сравнивается с предыдущим поколением?

По сравнению с корпусом компьютера это были довольно косметические изменения. Отделка осталась неизменной - стороны конструкции покрывают материал серебристым цветом, а верхняя часть покрыта глянцевой, вполне восприимчивой к отпечаткам пальцев и другой грязи, с черной панелью. В несколько более высокой модели, которая может вмещать 2, 5-дюймовый привод, изменения в корпусе одинаково малы. Несмотря на это, устройство по-прежнему выглядит привлекательно и идеально подходит для учебного зала, на рабочем столе или в домашнем развлекательном центре.

Характерные черты

  • Элементная база – интегральные схемы .
  • Соединение элементов – печатные платы .
  • Габариты – ЭВМ выполнена в виде однотипных стоек .
  • Быстродействие – 1-10 мил. операций в секунду .
  • Эксплуатация – вычислительные центры, дисплейные классы, новая специальность – системный программист.
  • Программирование – алгоритмические языки, ОС .
  • Оперативная память – 64 Кбайт .
  • Применяется принцип разделения времени, принцип модульности, принцип микропрограммного управления, принцип магистральности .
  • Появление магнитных дисков , дисплеев, графопостроителей.
  1. IV поколение ЭВМ

К сожалению, начиная с середины 1970-х годов стройная картина смены поколений нарушается. Все меньше становится принципиальных новаций в компьютерной науке. Прогресс идет в основном по пути развития того, что уже изобретено и придумано, - прежде всего, за счет повышения мощности и миниатюризации элементной базы и самих компьютеров. Обычно считается, что период с 1975 г. принадлежит компьютерам четвертого поколения. Их элементной базой стали большие интегральные схемы (БИС. В одном кристалле интегрированно до 100 тысяч элементов). Быстродействие этих машин составляло десятки млн. операций в секунду, а оперативная память достигла сотен Мб. Появились микропроцессоры (1971 г. фирма Intel), микро-ЭВМ и персональные ЭВМ. Стало возможным коммунальное использование мощности разных машин (соединение машин в единый вычислительный узел и работа с разделением времени). Однако, есть и другое мнение - многие полагают, что достижения периода 1975-1985 г.г. не настолько велики, чтобы считать его равноправным поколением. Сторонники такой точки зрения называют это десятилетие принадлежащим "третьему-с половиной" поколению компьютеров. И только с 1985г., когда появились супербольшие интегральные схемы (СБИС. В кристалле такой схемы может размещаться до 10 млн. элементов.), следует отсчитывать годы жизни собственно четвертого поколения, здравствующего и по сей день.

Вся процедура, однако, довольно проста, и в случае сомнений вы можете использовать прилагаемые инструкции. Однако, в отличие от популярной «Малинки», здесь больше возможностей настройки. В свою очередь, мы получаем полную поддержку производителя и трехлетнюю гарантию, которая может быть расширена и дополнена дополнительными услугами.

О таких мелочах, как жилье и более продуманный выбор портов, не говоря уже. Общие и графические тесты производительности. Чип может легко обрабатывать видеоизображение высокого разрешения, просмотр в Интернете, презентации или менее требовательные игры. Однако, если мы хотим запустить что-то более требовательное - система больше не сможет этого делать.

1-ое направление - создание суперЭВМ - комплексов многопроцессорных машин. Быстродействие таких машин достигает нескольких миллиардов операций в секунду. Они способны обрабатывать огромные массивы информации. Сюда входят комплексы ILLIAS-4, CRAY, CYBER, «Эльбрус-1», «Эльбрус-2» и др. Многопроцессорные вычислительные комплексы (МВК) "Эльбрус-2" активно использовались в Советском Союзе в областях, требующих большого объема вычислений, прежде всего, в оборонной отрасли. Вычислительные комплексы "Эльбрус-2" эксплуатировались в Центре управления космическими полетами, в ядерных исследовательских центрах. Наконец, именно комплексы "Эльбрус-2" с 1991 года использовались в системе противоракетной обороны и на других военных объектах.

Система началась быстро, и ее обслуживание было очень отзывчивым и просто приятным. Шаг вперед по отношению к предыдущему поколению заметно ниже разминки крошечного корпуса компьютера. Новое строительство, к счастью, уже не показывает таких тенденций. Уровень шума остался на том же уровне. Компьютер генерирует мягкий шум, но ни в коем случае не портят общее впечатление от использования устройства.

Также нет вибрации корпуса. Потребность в энергосистеме также полезна в новом поколении. Хотя наши измерения показали лишь незначительное улучшение - стоит отметить, тем более, что оборудование уже обладало исключительной энергоэффективностью. По сравнению с предыдущей моделью структура немного уменьшилась, но ее окончание практически не изменилось.

2-ое направление - дальнейшее развитие на базе БИС и СБИС микро-ЭВМ и персональных ЭВМ (ПЭВМ). Первыми представителями этих машин являются Apple, IBM - PC (XT , AT , PS /2), «Искра», «Электроника», «Мазовия», «Агат», «ЕС-1840», «ЕС-1841» и др. Начиная с этого поколения ЭВМ повсеместно стали называть компьютерами. А слово «компьютеризация» прочно вошло в наш быт. Благодаря появлению и развитию персональных компьютеров (ПК), вычислительная техника становится по-настоящему массовой и общедоступной. Складывается парадоксальная ситуация: несмотря на то, что персональные и миникомпьютеры по-прежнему во всех отношениях отстают от больших машин, львиная доля новшеств - графический пользовательский интерфейс, новые периферийные устройства, глобальные сети - обязаны своим появлением и развитием именно этой "несерьезной" техники. Большие компьютеры и суперкомпьютеры, конечно же, не вымерли и продолжают развиваться. Но теперь они уже не доминируют на компьютерной арене, как было раньше.

Характерные черты

  • Элементная база – большие интегральные схемы (БИС) .
  • Соединение элементов – печатные платы .
  • Габариты – компактные ЭВМ, ноутбуки .
  • Быстродействие – 10-100 млн. операций в секунду .
  • Эксплуатация – многопроцессорные и многомашинные комплексы, любые пользователи ЭВМ .
  • Программирование – базы и банки данных .
  • Оперативная память – 2-5 Мбайт .
  • Телекоммуникационная обработка данных, объединение в компьютерные сети.
  1. V поколение ЭВМ

ЭВМ пятого поколения - это ЭВМ будущего. Программа разработки, так называемого, пятого поколения ЭВМ была принята в Японии в 1982 г. Предполагалось, что к 1991 г. будут созданы принципиально новые компьютеры, ориентированные на решение задач искусственного интеллекта. С помощью языка Пролог и новшеств в конструкции компьютеров планировалось вплотную подойти к решению одной из основных задач этой ветви компьютерной науки - задачи хранения и обработки знаний. Коротко говоря, для компьютеров пятого поколения не пришлось бы писать программ, а достаточно было бы объяснить на "почти естественном" языке, что от них требуется. Предполагается, что их элементной базой будут служить не СБИС, а созданные на их базе устройства с элементами искусственного интеллекта. Для увеличения памяти и быстродействия будут использоваться достижения оптоэлектроники и биопроцессоры. На ЭВМ пятого поколения ставятся совершенно другие задачи, нежели при разработке всех прежних ЭВМ. Если перед разработчиками ЭВМ с I по IV поколений стояли такие задачи, как увеличение производительности в области числовых расчётов, достижение большой ёмкости памяти, то основной задачей разработчиков ЭВМ V поколения является создание искусственного интеллекта машины (возможность делать логические выводы из представленных фактов), развитие «интеллектуализации» компьютеров - устранения барьера между человеком и компьютером.

К сожалению, японский проект ЭВМ пятого поколения повторил трагическую судьбу ранних исследований в области искусственного интеллекта. Более 50-ти миллиардов йен инвестиций были потрачены впустую, проект прекращен, а разработанные устройства по производительности оказались не выше массовых систем того времени. Однако, проведенные в ходе проекта исследования и накопленный опыт по методам представления знаний и параллельного логического вывода сильно помогли прогрессу в области систем искусственного интеллекта в целом. Уже сейчас компьютеры способны воспринимать информацию с рукописного или печатного текста, с бланков, с человеческого голоса, узнавать пользователя по голосу, осуществлять перевод с одного языка на другой. Это позволяет общаться с компьютерами всем пользователям, даже тем, кто не имеет специальных знаний в этой области. Многие успехи, которых достиг искусственный интеллект, используют в промышленности и деловом мире. Экспертные системы и нейронные сети эффективно используются для задач классификации (фильтрация СПАМа, категоризация текста и т.д.). Добросовестно служат человеку генетические алгоритмы (используются, например, для оптимизации портфелей в инвестиционной деятельности), робототехника (промышленность, производство, быт - везде она приложила свою кибернетическую руку), а также многоагентные системы. Не дремлют и другие направления искусственного интеллекта, например распределенное представление знаний и решение задач в интернете: благодаря им в ближайшие несколько лет можно ждать революции в целом ряде областей человеческой деятельности.

Программное обеспечение

Примеры ЭВМ

c 1946

Электронная лампа

10-20 тыс. операций в 1 с.

2 Кбайт

Перфоленты

Перфокарты

Машинные коды

UNIVAC, МЭСМ, БЭСМ, СТРЕЛА

c 1955

Транзистор

100-1000 тыс. операций в 1 с.

2 – 32 Кбайт

Магнитная лента, магнитные барабаны

Алгоритмические языки, операционные системы

«Традис»

М-20

IBM-701

БЭСМ-6

c 1966

Интегральная схема (ИС)

1-10 млн. операций в 1 с.

64 Кбайт

Многотерминальные системы

Операционные системы

EC-1030

IBM-360

БЭСМ-6

c 1975

Большая интегральная схема (БИС)

1-100 млн. операций в 1 с.

1-64 Кбайт

Сети ПЭВМ

Базы и банки данных

IBM-386

IBM-486

Корнет

УКНЦ

с 90-х годов 20 в.

Сверхбольшая интегральная схема (СБИС)

Более 100 млн. операций в 1 с.

Оптические и лазерные устройства

Экспертные системы

4.СПИСОК ИСПОЛЬЗОВАННОЙ ЛИТЕРАТУРЫ

  1. http://evm-story.narod.ru/#P0
  1. http://www.wikiznanie.ru/ru-wz/index.php/ЭВМ

1 Эволюция ЭВМ

Механические вычислительные машины

Первая счетная машина с хранимой программой была построена французским ученым Блезом Паскалем в 1642 г. Она была механической с ручным приводом и могла выполнять операции сложения и вычитания.

В 1672 г. Готфрид Лейбниц построил механическую машину, которая могла делать также операции умножения и деления.

Впервые машину, работающую по программе, разработал в 1834 г. английский ученый Чарльз Беббидж. Она содержала запоминающее устройство, вычислительное устройство, устройство ввода с перфокарты и печатающее устройство. Все устройства машины Беббиджа, включая память, были механическими и содержали тысячи шестеренок, при изготовлении которых требовалась точность недоступная в XIX в. Машина реализовывала любые программы, записанные на перфокарте, поэтому впервые для написания таких программ потребовался программист. Первым программистом была англичанка Ада Ловлейс, в честь которой уже в наше время был назван язык программирования Ada.

В начале XIXвека компьютером называлась профессия человека занимающегося расчетами, вычислениями.

Электронные вычислительные машины

В развитии ЭВМ выделяют пять поколений.

Под поколением понимают все типы и модели ЭВМ, разработанные различными конструкторско-техническими коллективами, но построенных на одних и тех же научных и технических принципах.

Появление каждого нового поколения определялось тем, что появлялись новые базовые элементы , технология изготовления которых принципиально отличалась от предыдущего поколения.

Первое поколение . (1946 – середина 50-х гг.).В 1943 г. профессор Гарвардского университета Эйкен создал вычислительную перфорационную машину «Марк -1» на электромагнитных реле. В 1946 г. была создана ламповая вычислительная машина учеными Пенсильванского университета под руководством Джона Моучли ENIAC (Electronic Numeral Integrator And Computer – электронный числовой интегратор и компьютер), которая содержала 18 900 ламп, потребляла 150 кВт электроэнергии и выполняла 5 тыс. операций сложения в секунду. Так появились компьютеры первого поколения.

Особенности:

Элементная база электронно-вакуумные лампы;

Габариты – в виде шкафов и занимали машинные залы;

Программирование осуществлялось в машинных командах, а отладка за пультом управления;

Данные вводились с помощью перфокарт и магнитных лент с хранимыми программами;

Быстродействие – 10 – 100 тыс. оп./с.;

Они были очень громоздки и применялись в основном в крупных научных центрах.

Основоположником отечественной вычислительной техники стал электротехник Сергей Лебедев. Под его руководством в 1950 г. была создана самая быстродействующая малая электронная машина.

Второе поколение (средина 50 – середина 60 г.г.). В 1949 г. американские физики Уолтер Браттейн и Джон Бардин изобрели транзистор, а в 1954 г. Гордон Тил применил кремний для изготовления транзистора. Транзисторы заменили электронные лампы и с 1955 г. стали выпускаться компьютеры на транзисторах, это стали компьютеры второго поколения.

Особенности:

    элементная база – транзисторы;

    быстродействие – сотни тысяч – 1 млн. оп./с;

    понижено энергопотребление;

    повысилась надежность;

    появилась память на магнитных дисках;

    появились первые операционные системы;

    программирование осуществлялось с использованием языков высокого уровня (фортран, бейсик, алгол и д.р.);

    структура эвм – микропрограммный способ управления;

    эксплуатация – упростилась.

Наивысшим достижением отечественной вычислительной техники созданной коллективом С.А. Лебедева явилась разработка в 1966 году полупроводниковой ЭВМ БЭСМ-6 с производительностью 1 млн. операций в секунду.

Машинам второго поколения была свойственна программная несовместимость, которая затрудняла организацию крупных информационных систем. Поэтому в середине 60-х годов наметился переход к созданию компьютеров, программно совместимых и построенных на микроэлектронной технологической базе.

Третье поколение (60 – 70 г.г.). В 1958 г. Джек Килби изобрел первую интегральную схему, а Роберт Нойс – первую промышленную интегральную схему (Chip).

ИС - это кремниевый кристалл, площадь которого примерно 10 мм 2 . Одна интегральная система способна заменить десятки тысяч транзисторов. Один кристалл выполняет такую же работу, как и 30-ти тонный “Эниак”. В 1964 году, фирма IBM объявила о создании шести моделей семейства IBM 360 (System 360), ставших первыми компьютерами третьего поколения. Особенности:

    элементная база – интегральные схемы, большие интегральные схемы (ИС, БИС);

    габариты – однотипные стойки, требующие машинный зал;

    единая архитектура, то есть программно совместимые;

    быстродействие – сотни тысяч – миллионы оп./с;

    эксплуатация – оперативно производится ремонт;

    программирование – подобен II поколению;

    обладают возможностями мультипрограммирования, т.е. одновременного выполнения нескольких программ;

    структура ЭВМ – принцип модульности и магистральности;

    появились дисплеи, магнитные диски;

    задачи управления памятью, устройствами и ресурсами стала брать на себя операционная система или же непосредственно сама машина.

Примеры машин третьего поколения - семейства IBM-360, IBM-370, ЕС ЭВМ (Единая система ЭВМ), СМ ЭВМ (Семейство малых ЭВМ) и др. Быстродействие машин внутри семейства изменяется от нескольких десятков тысяч до миллионов операций в секунду. Ёмкость оперативной памяти достигает нескольких сотен тысяч слов. В конце 60-х появились мини-компьютеры.

Четвертое поколение (70 – по н/в)В 1971 г. был создан первый микропроцессор Intel 4004. Он состоял из 2300 транзисторов на площади 15 мм кв. и с тактовой частотой 108 КГц мог выполнять 45 различных команд и обладал такой вычислительной мощью как первый электронный компьютер, занимавший целую комнату.

В середине 70-х гг. были разработаны компьютеры четвертого поколения на больших и сверх больших ИС (до миллиона компонентов на кристалл). Также появились первые персональные компьютеры. В 1974 г. на основе процессора Intel 8080 был создан первый такой компьютер MITS Altair 8800. В 1977 г. компания Apple выпустила свой компьютер Apple II с графическими возможностями, цветным монитором и звуком. И наконец, 1981 г. появился компьютер IBM PC. Он был на базе процессора Intel 8088 c тактовой частотой 4,77 МГц, работающий под управлением операционной системы PC Dos 1.0, лицензия на которую принадлежала Биллу Гейтсу. Базовая цена 1565 долларов. Удачная конструкция этого компьютера стала использоваться в качестве стандарта ПК в конце XX века.

Быстродействие таких машин составляет тысячи миллионов операций в секунду. В таких машинах одновременно выполняются несколько команд над несколькими наборами операндов. С точки зрения структуры машины этого поколения представляют собой многопроцессорные и многомашинные комплексы, работающие на общую память и общее поле внешних устройств. Ёмкость оперативной памяти порядка 1 - 64 Мбайт.

Пятое поколение . В настоящее время ведутся работы по созданию ЭВМ пятого поколения. Программа разработки, таких ЭВМ была принята в Японии в 1982 г.

Разработка новых поколений компьютеров производится на основе БИС повышенной степени интеграции, использование оптоэлектронных принципов (лазеры, голография). Развитие идет также по пути "интеллектуализации" компьютеров, устранения барьера между человеком и компьютером. Компьютеры будут способны воспринимать информацию с рукописного или печатного текстов, человеческого голоса, с бланков, узнавать пользователя по голосу, осуществлять перевод с одного языка на другой.

В компьютерах пятого поколения произойдет качественный переход от обработки данных к обработке знаний.

Архитектура компьютера будущего поколения будет содержать два основных блока. Один из них - это традиционный компьютер, но теперь он лишен связи с пользователем. Эту связь осуществляет блок так называемый интеллектуальный интерфейс. Эго задача - понять текст, написанный на естественном языке и содержащий условие задачи, и перевести его в работающую программу компьютера.

Будет также решаться проблема децентрализации вычислений с помощью компьютерных сетей, как больших, находящихся на значительном расстоянии друг от друга, так и миниатюрных компьютеров, размещенных на одном кристалле полупроводника. Обработка знаний - использование и обработка компьютером знаний, которыми владеет человек для решения проблем и принятия решений.