Лекция: общий состав и структура персональных эвм и вычислительных систем, их программное обеспечение

31.01.2019

ЭВМ это комплекс программных средств, предназначенных для автоматической обработки информации.

В зависимости от аппаратной базы различают несколько поколений ЭВМ:

§ Первое поколение. Релейные и ламповые компьютеры

§ Второе поколение. Полупроводниковые компьютеры

§ Третье поколение. Компьютеры на интегральных схемах

§ Четвёртое поколение. Компьютеры на (сверх)больших интегральных схемах

§ Пятое поколение. Многопроцессорные компьютеры

Реализована идеология функционирования ЭВМ может быть по-разному: аппаратурными, программно-аппаратурными или программными средствами. При аппаратурной и программно-аппаратурной реализации могут быть применены регистры, дешифраторы, сумматоры; блоки жесткого аппаратурного управления или микропрограммного с управлением подпрограммами (комплексами микроопераций); устройства или комплексы устройств, реализованные в виде автономных систем (программируемых или с жестким управлением) и др. При программной реализации могут быть применены различные виды программ - обработчики прерываний, резидентные или загружаемые драйверы, соm-, ехе- или tsr - программы, bat- файлы и др.
Способы реализации функций ЭВМ составляют структурную организацию ЭВМ. Тогда элементная база, функциональные узлы и устройства ЭВМ, программные модули различных видов (обработчики прерываний, драйверы, соm-, ехе-, tsr-программы, bat-файлы и др.) являются структурными компонентами ЭВМ.

Организация работы ЭВМ при выполнении задания пользователя
Один из «прозрачных» процессов машины – это организация ввода, преобразование и отображение результатов работы системного программного обеспечения. Программа задания, написанная программистом на алгоритмическом языке называется исходным модулем.
Перевод исходной программы на машинный язык осуществляет программа translator. Он делится на: компилятор и интерпретатор.
Интерпретатор – после перевода на язык машины каждого оператора исходного модуля немедленно его исполняет.
Компилятор – сначала полностью переводит всю программу исходного модуля на машинный язык, затем его исполняет.
Объектный модуль – машинный язык.

Обобщенная структура ЭВМ

Простейшая структура ЭВМ с локальными шинами между ее устройствами, приведена на рисунке 1.4.1.

Рисунок 1.4.1-Обобщенная структура ЭВМ
В состав ЭВМ входят:
- оперативное запоминающее устройство (ОЗУ, более короткое обозначение- оперативная память ОП);
- процессор;
- устройство ввода- вывода (УВВ, другое обозначение- периферийное устройство ПУ);
-пульт контроля и управления (ПКУ).
Процессор предназначен для обработки информации. Он состоит из 2-х частей: УУ - устройство управления (управляющий автомат), и АЛУ - арифметико-логическое устройство.
Обработку информации процессор осуществляет под управлением программы, хранящейся в ОЗУ. В ОЗУ наряду с программой также хранятся и данные, подлежащие обработке. Программа и данные поступают из ОЗУ в процессор по каналу связи между ОЗУ и процессором, называемым в вычислительной технике шиной. Такие же шины соединяют процессор и с другими устройствами ЭВМ.
УВВ предназначено для ввода программ и данных в ОЗУ, то есть они сначала подготавливаются либо в виде перфокарт (ПФК), перфолент (ПФЛ), либо в виде магнитных лент, магнитных дисков и т.п., а затем вводятся в ОП машины. После этого программа запускается на обработку. В современных машинах диалогового режима данные в ОП могут заноситься и непосредственно с клавиатуры.
ПКУ предназначен для ручного пуска различного рода тестовых программ, контроля хода вычислительного процесса или функционирования устройств ЭВМ.

Характеристика основных устройств.
Обобщенная структурная схема ЭВМ включает 5 основных функциональных блоков: устройство ввода (УВв), запоминающее устройство (ЗУ), арифметико-логическое устройство (АЛУ), центр. устройство управления (ЦУУ) и устройство вывода информации (УВыв).
1)УВв : клавиатура (основное УВв информации); сканер; устройства введение речевой информации, например, с помощью микрофона, дисководы CD-ROM, DVD-ROM, дисководы для гибких магнитных дисков (дискет), диджитайзеры.
2)УВыв: принтеры (матричные, литерные, термографические, струйные, лазерные), дисплей, устройства вывода на микрофильм с применением фотопленки в качестве носителя (большая скорость вывода – 1500-2700 строк/мин.), вывод графической информации с помощью графопостроителя, дисководы CD-ROM, DVD-ROM, дисководы для гибких магнитных дисков (дискет), устройство вывода речевой инф-ии, плоттер (вывод графической инф.).
3)ЗУ: 3 вида: внутр. память: ОЗУ (оперативное запом. устройство) и ПЗУ (постоянное ЗУ); внешние ЗУ (ВЗУ).
ОЗУ служит для хранения данных, обрабатываемых процессором. Построена на микросхемах, для нее используется динамическая память, хар-ся емкостью (32 мВт), быстродействием. Поскольку доступ к любой ячейке этой памяти может осуществляться в любой момент времени, то ее называют памятью с произвольной выборкой (RAM). ОЗУ состоит из матрицы запоминающих элементов, регистров адреса, регистров числа и схем местного управления. Построена на БИС (боьшая интегральная схема) и СБИС (сверхбольшая интегр. схема) и является энергозависимой: при откл. питания информация в ОП теряется.
К внутр. памяти также относится ПП (пост. память), предназначенная для хранения постоянной информации, не изменяющейся в процессе вычисления. ПП используется для хранения микропрограмм, пограмм-трансляторов, стандартных программ, нормативных данных и т.п. ПЗУ работают только в режиме считывания информации, поэтому их конструкция проще, они дешевле, надежнее, чем ОЗУ. В ПЗУ хранится BIOS – базовая система ввода-вывода. ПЗУ делится на : 1) программируемые в процессе изготовления ПЗУ (ROM). Запись производится однократно. Такие ПЗУ имеют самую высокую плотность записи информации, они дешевые и конструктивно самые простые; 2) однократно программируемые заказчиком ПЗУ (PROM). Запись инф-ии выполняет заказчик с помощью спец. устройств (программаторов) по своему усмотрению, перезапись невозможна; 3) многократно перепрограммируемые ПЗУ допускают многократную запись инф-ии заказчиком и электрическое либо ультрафиолетовое стирание на спец. устройствах вне машины. Энергозависима.
ВЗУ – обеспечивают хранение больших массивов инф-ии. Относительно недороги, но менее быстродействующие по сравн. с устройствами внутренней памяти.ВЗУ делится на: 1) НМЛ (накопители на магнитных лентах); 2) НД (накоп. на дисках): НЖМД (накоп. на жестких маг. дисках - винчестер), НГМД (на гибких – дискета: слой пластика, покрытый магнитным слоем), ОД (оптич. диски). ОД : CD-ROM, DVD, CD-R, CD-RW, MO (магнитнооптич. диски).
4)АЛУ: выполняет арифметические и логические операции над операндами в принятой системе исчисления и вырабатывает признаки результата, необходимые для управления ходом вычислительного процесса. Иногда АЛУ наз-ся оперативным блоком. Содержит: регистры для приема операндов из ОП и хранения их в течение времени выполнения операции; сумматор, осуществляющий преобразование инф-ии; логические схемы для сдвига операндов вправо и влево и перевода из одного кода в другой; местный блок управления схемы оперативного контроля.
5) ЦУУ : реализует программный принцип управления и обеспечивает координацию работы всех блоков машины. В состав входит: блоки синхронизации, блоки формирования исполнительных адресов операндов, блоки управления операциями.
Следует отдельно сказать о центр. процессоре (ЦП) . В него входят: ЦУУ, АЛУ, внутренняя память, спец. системные средства (счетчик времени, ср-ва управл. ОП и т.п.) Процессор часть ЭВМ, кот. осуществляет управление данными и их обработкой. Процессор координирует работу всех устройств.
Осн. функции: выработка синхроимпульсов, анализ данных для управления, формулировка адресов для обращения, работа с памятью ЭВМ, обмен данными с др. устройствами.

Основные устройства ЭВМ. Обычно персональные компьютеры IBM PC состоят из трех частей блоков - системного блока - клавиатуры, позволяющей вводить символы в компьютер - монитора или дисплея - для изображения текстовой и графической информации. Компьютеры выпускаются и в портативном варианте - обычно в блокнотном ноутбук исполнении.

Здесь системный блок, монитор и клавиатура заключены в один корпус системный блок спрятан под клавиатурой, а монитор сделан как крышка к клавиатуре. Системный блок. Он является в компьютере главным. В нем располагаются все основные узлы компьютера - электронные схемы, управляющие работой компьютера микропроцессор, оперативная память, контроллеры устройств и т.д блок питания, который преобразует электропитание сети в постоянный ток низкого напряжения, подаваемый на электронные схемы компьютера - накопители или дисководы для гибких магнитных дисков, и пользуемые для чтения и записи на гибкие магнитные диски дискеты - накопитель на жестком магнитном диске, предназначенный для чтения и записи на несъемный жесткий магнитный диск винчестер - другие устройства.

Дополнительные устройства. К системному блоку компьютера IBM PC можно подключать различные устройства ввода-вывода информации, расширяя тем самым его функциональные возможности.

Внешние устройства. Многие устройства располагаются вне системного блока компьютера и подсоединяются к нему через специальные гнезда разъемы, находящиеся обычно на задней стенке системного блока. Такие устройства обычно называются внешними. Кроя монитора и клавиатуры, такими устройствами являются - принтер - для вывода на печать текстовой и графической информации - мышь - устройство, облегчающее ввод информации в компьютер - джойстик - манипулятор в виде укрепленной на шарнире ручки с кнопкой, употребляется в основном для компьютерных игр - а также другие устройства.

Внутренние устройства. Некоторые устройства могут вставляться внутрь системного блока компьютера поэтому они часто называются внутренними, например - модем или факс-модем - для обмена информацией с другим компьютерами через телефонную сеть факс-модем может также получать и принимать факсы - дисковод для компакт-дисков, он обеспечивает возможность чтения данных с компьютерных компакт-дисков и проигрывания аудиокомпакт-дисков - стример - для хранения данных на магнитной ленте - звуковая карта - для воспроизведения и записи звуков музыки, голоса и т.д Впрочем, модемы, факс-модемы, стримеры, дисководы для компакт-дисков и другие устройства могут выпускаться и во внешнем исполнении.

Как правило, устройства во внутреннем исполнении стоят дешевле - для них не надо изготавливать корпус и их не надо снабжать своим блоком питания.

Контроллеры и устройства. Для управления работой устройств в IBM PC-совместимых компьютерах используются электронные схемы - контроллеры. Различные устройства используют разные способы подключения к контроллерам - некоторые устройства дисковод для дискет, клавиатура и т.д. подключаются к имеющимся в составе компьютера стандартным контроллерам - некоторые устройства звуковые карты, многие факс-модемы и т.д. выполнены как электронные платы, то есть смонтированы на одной плате со своим контроллером - остальные устройства используют следующий способ подключения в системный блок компьютера вставляется электронная плата контроллер, управляющая работой устройства, а само устройство подсоединяется к этой плате кабелем. 9 4. Назначение, общие принципы и функции операционной системы.

Среди всех системных программ, с которыми приходиться иметь дело пользователям компьютеров, особое место занимают операционные системы. Операционная система управляет компьютером, запускает программы, обеспечивает защиту данных выполняет различные сервисные функции по запросам пользователя и программ.

Каждая программа пользуется услугами ОС, а потому может работать только под управлением той ОС, которая обеспечивает для нее эти услуги. Таким образом, выбор ОС очень важен, так как он определяет, с какими программами Вы сможете работать на своем компьютере. От выбора ОС зависят также производительность вашей работы, степень защиты Ваших данных, необходимые аппаратные средства и т.д. 9 5. Персональная ЭВМ развернутая структура структура программного обеспечения выбор ПЭВМ если возможно, то по прайс-листу некоторой фирмы. Развернутая структура тонкие линии показывают управляющие связи, толстые информационные Структура программного обеспечения Прикладные программы непосредственно обеспечивают выполнение необходимых пользователям работ редактирование текстов, обработка изображений и т.д. Системные программы выполняют различные функции, например создание копий используемой информации, проверку работоспособности устройств компьютера и т.д. Системы программирования обеспечивают создание новых программ для компьютера.

Грани между указанными тремя классами программ весьма условны, например в состав программы системного характера может входить редактор текстов, т.е. программа прикладного характера. 9 Выбор ПЭВМ рассмотрим на примере прайс-листа ООО Арсенал Прайс-лист от 11.09.2000 г Комплектацию компьютера необходимо начинать с выбора процессора.

В данном прайс-листе наиболее высоким отношением производительностьцена обладает процессор Intel Pentium-III 450 стоимостью 118. Второй шаг выбор материнской платы для данного процессора ASUS P3V133. Эта материнская плата обладает широкими возможностями модернизации возможна установка процессора P-III с тактовой частотой до 733 MHz и др. при небольшой цене 100. Третий этап выбор оперативной памяти.

На компьютеры новых поколений нецелесообразно устанавливать память объемом менее 64 MB. Для данной материнской платы подойдет память DIMM 64 MB SDRAM производства фирмы IBM. Четвертый этап комплектации компьютера выбор накопителей.

Выберем флоппи-дисковод FDD 1.44 MB 13 и жесткий диск объемом 15 GB производства Quantum 96. Следующий этап выбор видеокарты SVGA 8 MB S3 Trio 3D2X 26. Монитор неотъемлемая часть компьютера. Для удобства работы выберем монитор с диагональю 15 - ViewSonic E651 176. Без клавиатуры и мыши не обходится ни один современный компьютер.

Отдадим предпочтение клавиатуре Genius 8 и мыши Logitech M-S48 Scroll Whell 12. Выбранная мышь имеет колесико для прокрутки изображений для удобства работы в Интернете и текстовых редакторах. CD-Rom диски стали незаменимыми распространителями программ и информации, следовательно, компьютер без CD-Rom-привода будет отрезан от внешнего мира наиболее оптимальным в данном прайс-листе является 48-и скоростной привод Toshiba 43. Без звуковой карты компьютер не будет полностью мультимедийным выберем Sound Blaster AWE 1024 Live фирмы Creative 55. Также необходимо выбрать корпус системного блока около 35, колонки для подключения к звуковой карте и при необходимости принтер, сканер и модем. 6.

Конец работы -

Эта тема принадлежит разделу:

Программное обеспечение для ЭВМ

Практическая часть вопроса разработать документы для MS Word и MS Excel документ MS Word должен содержать встроенные объекты таблицу, формулы,… С самого раннего детства все мы вовлечены в процессы обмена информацией. … Мы получаем информацию, когда читаем книги, газеты и журналы, слушаем радио или смотрим телевизор.

Если Вам нужно дополнительный материал на эту тему, или Вы не нашли то, что искали, рекомендуем воспользоваться поиском по нашей базе работ:

Что будем делать с полученным материалом:

Если этот материал оказался полезным ля Вас, Вы можете сохранить его на свою страничку в социальных сетях:

1. Микропроцессор

2. Основная (материнская) плата и шина

4. Накопители на подвижном магнитном носителе

5. Накопители на гибких магнитных дисках

  • 6. Оптические диски
  • 7. Блоки расширения
  • Список литературы
1. Микропроцессор

Центром вычислительной системы является ее процессор. Это основное звено, или "мозг" компьютера. Именно процессор обладает способностью выполнять команды, составляющие компьютерную программу. Персональные компьютеры строятся на базе микропроцессоров, выполняемых в настоящее время на одном кристалле (чипе).

Внутреннее устройство процессоров непрерывно совершенствуется, и каждый следующий тратит на одну и ту же работу вдвое меньше тактов, чем предыдущий. В 8088 одна команда занимала 5-15 тактов, в Pentium - 0,5-1 (внутреннее дублирование схем позволяет ему выполнять несколько команд одновременно). Поэтому с точки зрения производительности микропроцессора, т. е. сколько он выполняет миллионов операций в секунду (MIPS - Million Instruction Per Second), каждое его следующее поколение даже при одной и той же тактовой частоте работает быстрее.

При переходе от одного поколения микропроцессоров к другому разработчики стремились сохранить набор основных команд, чтобы обеспечить преемственность и совместимость. При этом в формировании набора команд микропроцессора наметилось два направления. С одной стороны, программисту очень удобна машина, выполняющая одной командой какую-нибудь сложную операцию, например, команду извлечения квадратного корня. Но чем сложнее команды, тем сложнее схемы и дороже процессор. Поэтому программисты уже давно определили, какого минимального набора команд достаточно, чтобы программы из них было легко и удобно строить. А инженеры разработали схемы быстрого выполнения именно таких удобных команд. Программа, составленная из подобных простейших команд, - длиннее. Однако она исполняется настолько быстро, что в целом, все равно, ее исполнение занимает меньше времени. Кроме того, легче учесть взаимовлияние простых команд. Значит, проще оптимизировать программу, а затем эту оптимизацию автоматизировать.

С начала 1998 года Intel избрал новую политику - дробить рынок на части и для каждой делать свой продукт. Так наряду с производительными и дорогими Pentium II (с начала 1999 г. Pentium III) появилось семейство Celeron (рис.1-1), нацеленное на низшую ценовую категорию для конкуренции с микропроцессорами фирмы AMD.

В последние годы Intel развивает серию Pentium 4: 2000г.- Intel Pentium 4 (Willamette, Socket 423). Принципиально новый процессор с гиперконвейеризацией (hyperpipelining) - с конвейером, состоящим из 20 ступеней. Согласно заявлениям Intel, процессоры, основанные на данной технологии, позволяют добиться увеличения частоты примерно на 40 процентов относительно семейства P6 при одинаковом технологическом процессе. Применена 400 МГц системная шина (Quad-pumped), обеспечивающая пропускную способность в 3,2 ГБайта в секунду против 133 МГц шины с пропускной способностью 1,06 ГБайт у Pentium III. Кодовое имя: Willamette. Технические характеристики: технология производства - 0,18 мкм; тактовая частота - 1.3-2 ГГц; кэш первого уровня - 8 Кб; кэш второго уровня - 256 Кб (полноскоростной); процессор 64-разрядный; шина данных 64-разрядная (400 МГц); разъём Socket 423.

2. Основная (материнская) плата и шина

Для того чтобы микропроцессор мог работать, необходимы некоторые вспомогательные компоненты. Когда данные передаются внутри компьютерной системы, они проходят по общему каналу, к которому имеют доступ все компоненты системы. Этот путь получил название шины данных. Необходимо отметить, что понятие «шина данных» имеет общее значение, конкретно же и микропроцессор имеет свою шину данных и оперативная память. Когда нет специального уточнения, то речь идет, как правило, об общей шине, или иначе шине ввода-вывода.

Эта шина формируется на сложной многослойной печатной плате - основной, или иначе, материнской (motherboard рис. 1-2).

Системная шина представляет собой совокупность сигнальных линий, объединённых по их назначению (данные, адреса, управление). Основной функцией системной шины является передача информации между базовым микропроцессором и остальными электронными компонентами компьютера. По этой шине так же осуществляется не только передача информации, но и адресация устройств, а также обмен специальными служебными сигналами.

Концепция шины представляет собой один из наиболее совершенных методов унификации при разработке компьютеров. Вместо того чтобы пытаться соединять все элементы компьютерной системы между собой специальными соединениями, разработчики компьютеров ограничили пересылку данных одной общей шиной.

Эта идея чрезвычайно упростила конструкцию компьютеров и существенно увеличила ее гибкость. Чтобы добавить новый компонент, не требуется выполнять множество различных соединений, достаточно присоединить его к шине через специальный разъем (Slot). Чтобы упорядочить передачу информации по шине используется контроллер шины.

3. Память

Одним из основных элементов компьютера, позволяющим ему нормально функционировать, является память. Внутренняя память компьютера (оперативная память и кэш-память) - это место хранения информации, с которой он работает. Она является временным рабочим пространством. Информация во внутренней памяти не сохраняется при выключении питания, на диске же или дискете может храниться годами без потребления питания. В постоянной памяти (ROM) персонального компьютера записан набор программ базовой системы ввода-вывода (BIOS). Эта память энергонезависима и BIOS всегда готова к чтению при включении питания компьютера.

Основная (оперативная) память (RAM - Random Access Memory - память с произвольным доступом) компьютера отличается от прочих устройств памяти, прежде всего тем, что к любому ее месту можно обратиться одинаково быстро, даже если делать это в случайном (произвольном) порядке (random access).

Большинство старых программ, работающих под управлением DOS, укладываются в сотни килобайт - ведь DOS адресует только 640 Кбайт. Современные операционные системы многозадачные. Они позволяют нескольким программам действовать одновременно, а главное, взаимодействовать между собой. Поэтому для их работы требуется значительный объем оперативной памяти, например, для операционной системы Windows ME - 64 Мбайт, для Windows XP - 128 Мбайт. Причем эти требования минимальные. Для приемлемой скорости работы с наиболее часто используемыми комбинациями программ эти цифры надо хотя бы удвоить или лучше учетверить.

Физически оперативная память устанавливается в виде модулей SIMM (Single In-line Memory Modules) или DIMM (Double In-line Memory Modules) в специальные гнезда на материнской плате (рис. 1-3).

На системной (материнской) плате модули памяти организуются в банки памяти. В компьютерах последних лет разъемы для модулей SIMM полностью исключены, так что используются только DIMM модули объемом 64 МВ и выше. Оперативная память подвержена многим помехам. Поэтому обычно к каждому байту добавляют девятый бит - для контроля на четность. Существуют также способы автоматического восстановления информации при сбоях. Однако они требуют большей избыточности памяти и соответственно повышают ее цену. Поэтому память с расширенным корректирующим кодом (ЕСС - Extended Correction Code) используют, прежде всего, в мощных машинах, решающих серьезные задачи.

4. Накопители на подвижном магнитном носителе

Для первых персональных компьютеров разработали винчестеры диаметром 5,25", затем для портативных компьютеров - 3,5"; а в ноутбуки уже ставят накопители диаметром 2,5" и даже 1,8". Винчестеры размером 5,25" теперь не используются даже в настольных компьютерах, чаще устанавливаются 3.5" (рис. 1-4). Устройства управления винчестерами - контроллеры - раньше размещались на отдельных печатных платах. Теперь почти все нужные схемы встраивают в корпус винчестера - Integrated Drive Eiectronic (IDE), а немногие оставшиеся компоненты обычно включены в motherboard (или на плате расширения, называемой MultiCard) и подключаются через плоский специальный многожильный кабель.

В 2003 году появились первые экземпляры контроллеров Serial ATA на популярных материнских платах. Прежде всего, кабель у нового интерфейса принципиально отличается от прежнего плоского и широкого (40- или 80-жильного), у него количество сигнальных проводов сокращено до четырех (есть дополнительная «земля»), и до метра увеличена допустимая длина. Это способствует более компактной упаковке и лучшим условиям охлаждения внутри корпуса компьютера, удешевляет конструкцию. Тут компактные семиконтактные разъемы соединяются узким уплощенным кабелем шириной примерно 8 мм и толщиной около 2 мм. Внутри кабеля Serial ATA находятся две пары сигнальных проводов (одна пара на прием, другая - на передачу), отделенных тремя жилами общего провода («земли»). На разъеме, расположенном на дисках и материнских платах, три «земляных» контакта выступают чуть дальше сигнальных контактов, чтобы облегчить «горячее» подключение (рис. 1-5).

5. Накопители на гибких магнитных дисках

Гибкий (floppy) диск (дискета) - круг лавсановой пленки с магнитным покрытием, помещенный в защитный конверт еще недавно был единственным сменным носителем информации в компьютере, ведь первые PC (до РС ХТ) других дисков не имели. Первые дискеты для РС были размера 5,25", портативные РС потребовали формата 3,5", однако позднее они стали применяться на всех компьютерах, и вытеснили дискеты 5,25".

Информация на дискету записывается с двух сторон, с каждой из которых располагается 80 дорожек. Головки на верхней и нижней сторонах дискеты смещены друг относительно друга, чтобы они не мешали подтягивать (для уменьшения зазора) поверхность дискеты к головкам за счет аэродинамических эффектов при вращении носителя. Также в зависимости от формата каждая сторона разбивается на определенное количество секторов.

В дисководах (рис. 1-6) для гибких дисков (дискет) головки записи/чтения при его работе непосредственно касаются поверхности дискеты, поэтому скорость вращения значительно ниже (300 или 360 оборотов в минуту) и дискеты быстрее выходят из строя. Для уменьшения трения дискеты покрывают защитным слоем тефлона (фр. тефаль) - материала с очень низким коэффициентом трения. Они дороже раза в полтора, но зато служат гораздо дольше.

6. Оптические диски

В эту группу объединены носители, которые для считывания информации используется чисто оптический принцип, когда 1 или 0 распознаются по различной фазе отраженного лазерного луча от поверхности с различным состоянием, созданным при записи данных.

WORM - накопители (Write Once Read Many - одна запись много считываний) представляют собой диск, помещенный обычно в прочный картридж 5,25", по конструкции подобный дискете 3,5" . Запись информации сводится к тому, что на светлой поверхности диска там, где это нужно, выжигаются лазерным лучом микроскопические темные пятнышки. Емкость накопителя составляет от 650 Мбайт до 1,3 Гбайт.

Для записи поверхность магнитооптического диска прогревают лазерным лучом до температуры легкого перемагничивания (точки Кюри). Обычно сначала при постоянном нагреве намагничивают записываемый участок в одном направлении, а потом импульсным нагревом перемагничивают нужные точки. Это долго, требуется два оборота диска. Новейшие устройства способны создавать быстропеременное магнитное поле нужной силы и записывают за один оборот. Так что и по скорости записи магнитооптика догоняет винчестер. При этом, как и винчестер позволяют многократно перезаписывать информацию и подобно дискете заменять носитель. Такое сочетание свойств объясняет большую популярность МО в мире.

В конце 70-х годов компания Philips выпустила первые компакт-диски (CD - Compact-Disk). Вначале они предназначались для 14-разрядной звуковой записи продолжительностью звучания 60 минут. Диаметр тех дисков был несколько меньше диаметра современных компакт-дисков, который равен 12 см (4,75 дюйма). Вскоре Philips обменялась патентами с Sony, в результате чего был издан совместный стандарт. Стандарт определял характеристики аудиодисков (CD-DA - Compact-Disk Digital Audio - компакт-диск для цифровой аудиозаписи). Запись звука стала 16-разрядной, а продолжительность звучания не менее 72 минут (говорят, что длительность определялась возможностью записи на один диск Девятой симфонии Бетховена). При непрерывном чтении и воспроизведении музыки для этого оказалось достаточно скорости чтения 150 Кбайт/с. Теперь приводы CD-ROM работают с существенно большей кратностью чтения до 56Х (рис. 1-7).

Впоследствии были выпущены стандарты для других типов компакт-дисков. Компании Philips и Sony в декабре 1994 года объявили, что разработан проект стандарта, названного MMCD (MultiMedia Compact Disk). Диск с однослойной записью мог иметь емкость 3,7 Гбайт. При помощи компании ЗМ была разработана технология 2-cлoйной записи для проекта MMCD. В этом случае емкость диска удваивалась. Такие параметры уже могли обеспечить проигрывание цифрового видео в формате MPEG-2 (Motion Picture Experts Group) в течение 135 и 270 минут соответственно.

7. Блоки расширения

Блоки (платы) расширения или карты (Card), как их иногда называют, могут использоваться для обслуживания устройств, подключаемых к IBM PC. Они могут использоваться для подключения дополнительных устройств (адаптеров дисплея, контроллера дисков и т.п.). Если оборудование умещается на одной плате, то его можно разместить внутри корпуса системного блока. Если же оно не помещается в корпус, например, в случае с монитором, то внутри размещается только плата управления или согласования, соединяющаяся с оборудованием с помощью кабеля, который можно подключить через соединитель (Connector), расположенный на задней стенке корпуса (точнее, соединитель располагается обычно непосредственно на торце платы). Каждой плате расширения, устанавливаемой в слот (Slot) на материнской плате, соответствует специальное отверстие в задней стенке корпуса, закрытое заглушкой, если оно не используется. При установке платы ее торец вместо заглушки становится элементом задней стенки компьютера.

Первой приобрела популярность, достаточную для массового выпуска, плата Sound Blaster. Сегодня почти все звуковые платы обеспечивают совместимость с нею (рис. 1-8). Современные звуковые платы могут не просто воспроизвести объемный звук, но и объемный управляемый в зависимости от изображения на экране.

В персональных компьютерах видео платы (VideoCard), прежде всего, предназначались для согласования с монитором (видеоадаптеры), затем вывода на экран графики понадобились ускорители (видео акселераторы).

РС начинают загрузку с режима VGA - Video Graphic Array (640x480 пикселей - picture element, pixel). Режим SuperVGA, формат 800 х 600 пикселей нужен, чтобы при оформлении одиночного документа было доступно все богатство шрифтов системы Windows. Для верстки журналов и газет требуется, хотя бы 1024 х 768, а лучше - 1280 х 1024 пикселей. Иначе не разглядишь, как стыкуются отдельные фрагменты. Рисование идет быстро на экране с разрешением 1280 х 1024 - 1600 х 1200, с меньшим форматом придется постоянно переключаться на крупномасштабный просмотр фрагментов и т.д.

Если умножить шаг (расстояние между центрами пикселей) на требуемое число пикселей в строке, а затем помножить на 1,25 (отношение длины диагонали экрана к длине его строки), то получится длина в миллиметрах диагонали нужного монитора. (В дюймах - поделите на 25,4). Так, что для современных персональных компьютеров требуется монитор с размером по диагонали не менее 15 (лучше 17) дюймов (рис. 1-9).

Список литературы 1. Кузнецов Е. Ю., Осман В. М. Персональные компьютеры и программируемые микрокалькуляторы: Учеб. пособие для ВТУЗов - М.: Высш. шк. -1991 г. 160 с.2. Борзенко А.В. IBM PC: устройство, ремонт, модернизация. - М., Компьютер Пресс, 1996.- 344 с.3. Ахметов А. Н., Борзенко А. В. Современный персональный компьютер. - М.: Компьютер Пресс, 2003.-317 с.4. Компьютерра//М.: ООО "Пресса" - 2001.5. Компьютер Пресс//М.: Компьютер Пресс - 2002.

Аппаратное обеспечение ЭВМ

Основной принцип построения ЭВМ

Что такое ЭВМ

Электронная вычислительная машина (ЭВМ), или компьютер - это электронное устройство, которое предназначено для ввода, обработки, хранения и выдачи информации и в котором вычислительный процесс управляется программой.

С середины 60-х годов ХХ столетия проектируются и разрабатываются вычислительные системы, представляющие взаимосвязанную совокупность аппаратных и программных средств.

В настоящее время ЭВМ обрабатывают числовую, текстовую, графическую и звуковую информацию, которая должна быть представлена в компьютерной форме (на машинном языке), то есть в виде последовательности нулей и единиц. Информация, которая представлена на машинном языке и обрабатывается на ЭВМ, называется данными.

ЭВМ обрабатывает данные в соответствии с алгоритмом решения поставленной задачи. Современные ЭВМ строятся на основе принципа программного управления, который предполагает:

Исходные данные, промежуточные и конечные результаты задаются на машинном языке и разделяются на элементы информации, которые называются словами;

Операции над словами выполняют операторы, которые называются командами;

Алгоритм, представленный совокупностью команд, называется программой.

Один из способов реализации программного управления был предложен в 1945 г. американским учёным Дж. фон Нейманом и используется в настоящее время в качестве основного принципа построения современных ЭВМ.

Из Неймановского принципа программного управления однозначно определяется состав ЭВМ:

Память, для хранения программ и данных;

Арифметико-логическое устройство (АЛУ);

Устройство управления (УУ);

Устройство ввода информации;

Устройство вывода информации.

Запоминающие устройства (ЗУ) предназначено для приёма, хранения и выдачи данных и команд.

В ЭВМ имеется несколько типов ЗУ, которые различаются по своим основным характеристикам - быстродействию и ёмкости. Это объясняется тем, что ни один из типов ЗУ не удовлетворяет двум противоречивым требованиям: высокой скорости приёма и выдачи информации и большой ёмкости.

В современных ЭВМ используются два типа ЗУ: внутренние ЗУ и внешние ЗУ. Внутренние ЗУ характеризуются высоким быстродействием, соизмеримым с быстродействием работы АЛУ, но они не обладают необходимыми характеристиками по ёмкости хранимой информации.

К внутренним ЗУ относится:

Оперативное ЗУ (ОЗУ), которое часто называют RAM (Random Access Memory), то есть память с произвольным доступом;


Постоянное запоминающее устройство (ПЗУ);

Кэш-память;

Регистры общего назначения (РОН).

ОЗУ служит для хранения выполняемых программ и данных, которые участвуют в операциях. Однако информация в нём сохраняется только до тех пор, пока включён компьютер.

В ПЗУ хранятся постоянные величины (константы) и некоторые программы. Информация в ПЗУ, как правило, записывается при конструировании ЭВМ и в дальнейшем не меняется. При считывании информация в ПЗУ сохраняется.

ОЗУ и ПЗУ образуют Основную Память ЭВМ.

Кэш-память служит для повышения быстродействия работы ЭВМ, так как сохраняет наиболее часто используемые команды и данные.

РОН - ячейки памяти, в которых размещаются числа выполняемой команды.

Для хранения больших объёмов информации применяют более дешевые, но значительно менее быстродействующие внешние запоминающие устройства (ВЗУ). ВЗУ имеют много общего с устройствами ввода-вывода, которые рассмотрим позже. ВЗУ и устройства ввода-вывода принято называть периферийными устройствами (ПУ).

ВЗУ обеспечивают долговременное хранение данных и программ на различных носителях информации.

В зависимости от типа носителя ВЗУ делятся на накопители на магнитных лентах (стримеры), накопители на гибких и жёстких магнитных дисках (НГМД и НЖМД), накопители на оптических дисках (CD и DVD) и полупроводниковые накопители (Flash-память).

Следует отметить, что некоторые устройства могут выпускаться как во внешнем, так и во внутреннем исполнении, Например, во внутреннем исполнении, выпускаются дисководы, стримеры, звуковые карты, модемы. Однако, модемы, стримеры и дисководы могут выпускаться и во внешнем исполнении.

АЛУ служит для выполнения арифметических и логических операций над числами и командами, которые представлены на машинном языке.

Основным блоком АЛУ большинства ЭВМ является блок сумматора, осуществляющий сложение двух чисел. Выполнение всех других операций сводится к выполнению операции сложения и некоторых вспомогательных операций, таких как сдвиг числа, преобразование кода числа и других.

УУ служит для управления взаимодействием всех функциональных устройств ЭВМ и необходимо для реализации вычислительного процесса, производимого по заранее составленным и введенным в ЭВМ программам.

В настоящее время УУ и АЛУ объединяют в один блок и называют этот блок - Процессор. В состав Процессора обязательно включается ЗУ небольшой ёмкости: кэш-память и регистры общего назначения.

В зависимости от используемой системы команд различают Процессоры типа:

CISC (Complex Instruction Set Command) с полным набором системы команд;

RISC (Reduced Instruction Set Command) с усеченным набором системы команд.

Устройства ввода информации служат для восприятия вводимой информации (исходных данных и программ), её преобразования и передачи в ЗУ ЭВМ. Устройства ввода можно разделить на несколько групп.

Основным средством ввода информации является клавиатура, которая позволяет вводить числовую и текстовую информацию.

Координатные устройства ввода предназначены для работы с графическим интерфейсом программ, то есть обеспечивают перемещение указателя по экрану монитора. Такими устройствами являются: манипуляторы (мышь,джойстик и трекбол), сенсорные панели TouchPad (тачпад).

Сканер - оптическое устройство для ввода и преобразования в компьютерную форму текста, рисунков, фотографий.

Дигитайзер - устройство для ввода графической информации.

В последние годы появились и широко распространяются такие устройства ввода как цифровые видеокамеры, цифровые фотоаппараты и звуковые карты.

Цифровые видеокамеры - подключают к компьютеру для сохранения видеозаписи в компьютерной форме (компьютерном формате).

Цифровые фотоаппараты - подключают к компьютеру для сохранения фотографий на жестком диске.

Звуковая карта преобразует звук из аналоговой формы в цифровую.

Устройства вывода информации предназначены для связи ЭВМ с окружающей средой, то есть с человеком или каким-либо другим автоматическим устройством. Выводимая информация представляется в удобном для дальнейшего использования виде: печатается на бумаге, или отображается на экране монитора, или воспроизводится в виде звуков или электрических сигналов.

Современные устройства вывода можно разделить на несколько групп.

Мониторы - предназначены для отображения числовой, текстовой и графической информации, как вводимой с клавиатуры, так и полученной в результате решения задачи.

Принтеры - предназначены для вывода на бумагу числовой, текстовой и графической информации.

Модемы - предназначены для обмена информацией через телефонную сеть с другими компьютерами. Модемы выпускаются как в виде отдельного устройства, так и могут вставляться внутрь компьютера.

Образовательные результаты З1, З2

План:

1.Классификация ЭВМ.

2.Классификация ПЭВМ.

3.Основные виды и принципы архитектуры ЭВМ.

4.Состав и назначение устройств персонального компьютера (ПК).

Классификация ЭВМ

Электронная вычислительная машина, компьютер – комплекс технических средств, предназначенных для автоматической обработки информации в процессе решения вычислительных и информационных задач.
Классификация ЭВМ по принципу действия

Цифровые вычислительные машины (ЦВМ) – вычислительные машины дискретного действия, работают с информацией, представленной в дискретной (цифровой) форме. ЦВМ отличаются высокой точностью вычисления и удобством хранения информации.

Аналоговые вычислительные машины (АВМ) – вычислительные машины непрерывного действия, работают с информацией, представленной в непрерывной (аналоговой) форме, т.е. в виде непрерывного рядя значений какой-либо физической величины. АВМ просты и удобны в эксплуатации, характеризуются высоким быстродействием и относительно высокой тонностью.

Гибридные вычислительные машины (ГВМ) – вычислительные машины комбинированного действия, работают с информацией, представленной в цифровой и аналоговой форме. Они совмещают преимущества ЦВМ и ГВМ.

Классификация ЭВМ по этапам создания

1-е поколение, 50-е годы. ЭВМ на электронных вакуумных лампах.

2-е поколение, 60-е годы. ЭВМ на дискретных полупроводниковых приборах.

3-е поколение, 70-е годы. ЭВМ на полупроводниковых интегральных микросхемах малой и средней степени интеграции (сотни - тысячи элементов на кристалл).

4-е поколение, 80-е годы. ЭВМ на больших и сверхбольших интегральных схемах.

5-е поколение 90-е годы. ЭВМ с многими десятками параллельно работающих микропроцессоров. ЭВМ на сверхсложных микропроцессорах с параллельно-векторной структурой.

6-е и последующее поколения, оптоэлектронные ЭВМ с массовым параллелизмом и нейронной структурой – с распределенной сетью большого числа не сложных микропроцессоров, моделирующих архитектуру нейронных биологических систем.

Классификация по поколениям

Деление компьютерной техники на поколения - на самом деле весьма условная, нестрогая классификация вычислительных систем по степени развития аппаратных и программных средств, а также способов общения с компьютером.
Идея классифицировать машины по поколениям вызвана " жизни тем, что за время короткой истории своего развития компьютерная техника проделала большую эволюцию как в смысле элементной базы (лампы, транзисторы, микросхемы и др.) так и в смысле изменения ее структуры, появления новых возможностей, расширения областей применения и характера использования.
1.Компьютеры первого поколения. К первому поколению обычно относят машины, созданные на рубеже 50-х гг. В их схемах использовались электронные лампы. Эти компьютеры были огромными, неудобными и слишком дорогими машинами, которые мог приобрести только крупные корпорации и правительства. Лампы потребляли огромное количество электроэнергии и выделяли много тепла. Набор команд был небольшой, схема арифметико-логического устройства и устройства управления достаточно проста, программное обеспечение практически отсутствовало. Показатели объема оперативной памяти и быстродействия были низкими. Для ввода-вывода использовались перфоленты, перфокарты, магнитные ленты и печатающие устройства. Быстродействие - порядка 10-20 тыс. операций в секунду.
Но это только техническая сторона. Очень важна и другая - способы использования компьютеров, стиль программирования, особенности их математического обеспечения. Программы для этих машин писались на языке конкретной машины. Математик, составивший программу, садился за пульт управления машины, вводил и отлаживал программы и производил по ним счет. Процесс отладки был наиболее длительным по времени. Несмотря на ограниченность возможностей, эти машины позволили выполнить сложнейшие расчеты, необходимые для прогнозирования погоды, решения задач атомной энергетики и др.
Опыт использования машин первого поколения показал, что существует огромный разрыв между временем, затрачиваемым на разработку программ, и временем счета. Эти трудности начали преодолевать путем интенсивной разработки средств автоматизации программирования, создания систем обслуживающих программ, упрощающих работу на машине и увеличивающих эффективность ее использования. Это, в свою очередь, потребовало значительных изменений в структуре компьютеров, направленных на то, чтобы приблизить ее к требованиям, возникшим из опыта эксплуатации компьютеров. Отечественные машины первого поколения: МЭСМ (малая электронная счетная машина), БЭСМ, Стрела, Урал, М-20.



2.Компьютеры второго поколения. Второе поколение компьютерной техники - машины, сконструированные примерно в 1955-1965 гг. Характеризуются использованием в них как электрон-1цк ламп, так и дискретных транзисторных логических элементов. Их оперативная память была построена на магнитных сердечниках. В это время стал расширяться Диапазон применяемого оборудования ввода-вывода, появились высокопроизводительные устройства для работы с магнитными лентами, магнитные барабаны и первые магнитные диски. Быстродействие - до сотен тысяч операций в секунду, емкость памяти - до нескольких десятков тысяч слов.
Появились так называемые языки высокого уровня, средства которых допускают описание всей необходимой последовательности вычислительных действий в наглядном, легковоспринимаемым виде. Программа, написанная на алгоритмическом языке, непонятна компьютеру, воспринимающему только язык своих собственных команд. Поэтому специальные программы, которые называются торами, переводят программу с языка высокого уровня на машинный язык. Появились широкий набор библиотечных программ для решения разнообразных математических задач; мониторные системы, управляющие режимом трансляции и исполнения программ. На основе мониторных систем в дальнейшем были созданы современнее операционные системы.
Операционная система - важнейшая часть программного обеспечения компьютера, предназначенная для автоматизации планирования и организации процесса обработки программ, ввода-вывода и управления данными, распределения ресурсов, подготовки и отладки программ, других вспомогательных операций обслуживания. Таким образом, операционная система является программным расширением устройства управления компьютера.
Для некоторых машин второго поколения были созданы операционные системы с ограниченными возможностями.
Машинам второго поколения была свойственна программная несовместимость, которая затрудняла организацию крупных информационных систем. Поэтому в середине 60-х гг. наметился переход к созданию компьютеров, программно совместимых и построенных на микроэлектронной технологической базе.
3. Компьютеры третьего поколения. Машины третьего поколения созданы примерно после 60-х гг. Поскольку процесс создания компьютерной техники шел непрерывно и в нем участвовало множество людей из разных стран, имеющих дело с решением различных проблем, трудно и бесполезно пытаться установить, когда поколение начиналось и заканчивалось. Возможно, наиболее важным критерием различия машин второго и третьего поколений является критерий, основанный на понятии архитектуры. Машины третьего поколения - это семейства машин с единой архитектурой, т. е. программно совместимых. В качестве элементной базы в них используются интегральные схемы, которые также называются микросхемами.
Машины третьего поколения имеют развитые операционные системы. Они обладают возможностями мультипрограммирования, т. е. одновременного выполнения нескольких программ. Многие задачи управления памятью, устройствами и ресурсами стала брать на себя операционная система или же непосредственно сама машина. Примеры машин третьего поколения - семейства IBM-360, IBM-370, EC ЭВМ (Единая система ЭВМ), СМ ЭВМ (Семейство малых ЭВМ) и др. Быстродействие машин внутри семейства изменяется от нескольких десятков тысяч до миллионов операций в секунду. Емкость оперативной памяти достигает нескольких сотен тысяч слов.
4.Компьютеры четвертого поколения. Четвертое поколение - это поколение компьютерной техники, разработанное после 1970 г. Наиболее важный в концептуальном отношении критерий, по которому эти компьютеры можно отделить от машин третьего поколения, состоит в том, что машины четвертого поколения проектировались в расчете на эффективное использование современных высокоуровневых языков и упрощение процесса программирования для конечного пользователя.
В аппаратурном отношении для машин четвертого поколения характерно широкое использование интегральных схем в качестве элементной базы, а также наличие быстродействующих запоминающих устройств с произвольной выборкой емкостью в десятки мегабайт.
С точки зрения структуры компьютеры этого поколения представляют сомногопроцессорные и многомашинные комплексы, работающие на общую память
общее поле внешних устройств. Быстродействие составляет до нескольких десятков миллионов операций в секунду, емкость оперативной памяти - порядка 1-64 Мбайт. Для компьютеров четвертого поколения характерны:

ü применение персональных компьютеров;

ü телекоммуникационная обработка данных;

ü объединение в компьютерные сети;

ü широкое использование систем управления базами данных;

ü элементы интеллектуального поведения систем обработки данных и устройств.

5. Компьютеры пятого поколения. Тактовая частота Pentium V составит 5-7 гигагерц, объём КЭШа второго уровня - два мегабайта. Процессор будет изготовлен по 90-нанометровому технологическому процессу. Устройство процессора позволяет крепить к нему дополнительный модуль, обеспечивающие 64-битные расширения.
Три концептуальные модели Pentium V были представлены на выставке Computex на Тайване. Следующий процессор Pentium VI Nehalem ожидается, идея заключается в том, чтобы, приобретая 32-х битный модуль, пользователь мог при необходимости наращивать его для получения 64-х битного процессора. Pentium V сможет работать с частотой системной шины до 4000 МГц, хотя столь высокая частота может быть отложена для последующих процессоров, таких как Nehalem.
Разработка последующих поколений компьютеров производится на основе больших интегральных схем повышенной степени интеграции, использования оптоэлектронных принципов (лазеры, голография). Развитие идет также по пути «интеллектуализации» компьютеров, устранения барьера между человеком и компьютером.
Классификация по условиям эксплуатации.
По условиям эксплуатации компьютеры делятся на два

ü офисные (универсальные);

ü специальные.

Офисные компьютеры предназначены для решения широкого класса задач при нормальных условиях эксплуатации.
Специальные компьютеры служат для решения более узкого класса задач или даже одной задачи, требующей многократного решения, и функционируют в особых условиях эксплуатации. Машинные ресурсы специальных компьютеров часто ограничены. Однако их узкая ориентация позволяет реализовать класс задач наиболее эффективно.
Специальные компьютеры управляют технологическими установками, работают в операционных или машинах «скорой помощи», на ракетах, самолетах и вертолетах, вблизи высоковольтных линий передач или в зоне действия радаров, радиопередатчиков, в не отапливаемых помещениях, под водой на глубине, в условиях пыли, грязи, вибраций, взрывоопасных газов и т. п. Существует много моделей таких компьютеров. Познакомимся с одной из них.
Компьютер Ergotouch (Эрготач) исполнен в литом алюминиевом, полностью герметичном корпусе, который легко открывается для обслуживания. Стенки компьютера поглощают практически все электромагнитные излучения как внутри, так и снаружи. Машина оборудована экраном, чувствительным к прикосновениям. Компьютер можно, не выключая, мыть из шланга, дезинфицировать, дезактивировать, обезжиривать. Высочайшая надежность позволяет использовать его как средство управления и контроля технологическими процессами в реальном времени. Компьютер легко входит в локальную сеть предприятия.
Важное направление в создании промышленных компьютеров - разработка операторского интерфейса - пультов управления, дисплеев, клавиатур и указательных устройств во всевозможных исполнениях. От этих изделий напрямую зависит комфортность и результативность труда операторов.
Классификация по производительности и характеру использования.
По производительности и характеру использования компьютеры можно условно подразделить на:

ü микрокомпьютеры, в том числе персональные компьютеры;

ü мини-компьютеры;

ü мэйнфреймы (универсальные компьютеры);

ü суперкомпьютеры.

Микрокомпьютеры - это компьютеры, в которых центральный процессор выполнен в виде микропроцессора. Современные модели микрокомпьютеров имеют несколько микропроцессоров. Производительность компьютера определяется не только характеристиками применяемого микропроцессора, но и емкостью оперативной памяти, типами периферийных устройств, качеством Конструктивных решений и др. Микрокомпьютеры представляют собой инструменты для решения разнообразных сложных задач. Их микропроцессоры с каждым годом увеличивают мощность, а периферийные устройства - эффективность. Быстродействие - порядка 1 - 10 млн. операций в секунду.
Персональные компьютеры (ПК) - это микрокомпьютеры универсального назначения, рассчитанные на одного пользователя и управляемые одним человеком.
В класс персональных компьютеров входят различные машины - от дешевых домашних и игровых с небольшой оперативной памятью, с памятью программы на кассетной ленте и обычным телевизором в качестве дисплея до сверхсложных машин с мощным процессором, винчестерским накопителем емкостью в десятки гигабайт, с цветными графическими устройствами высокого разрешения, средствами мультимедиа и другими дополнительными устройствами.
Персональный компьютер имеет следующие характеристики:

ü стоимость от нескольких сотен до 5-10 тыс. долларов;

ü наличие внешних ЗУ на магнитных дисках;

ü объем оперативной памяти не менее 4 Мбайт;

ü наличие операционной системы;

ü способность работать с программами на языках высокого уровня;

ü ориентация на пользователя-непрофессионала (в простых моделях).

Мини-компьютерами и суперминикомпьютерами называются машины, конструктивно выполненные в одной стойке, т. е. занимающие объем порядка половины кубометра. Сейчас компьютеры этого класса вымирают, уступая место микрокомпьютерам.
Мэйнфреймы предназначены для решения широкого класса научно- технических задач и являются сложными и дорогими машинами. Их целесообразно применять в больших системах при наличии не менее 200-300 рабочих мест. Централизованная обработка данных на мэйнфрейме обходится примерно в 5-6 раз дешевле, чем распределенная обработка при клиент-серверном подходе. Известный мэйнфрейм S/390 фирмы IBM обычно оснащается не менее чем тремя процессорами. Максимальный объем оперативного хранения достигает 342 Тбайт. Производительность его процессоров, пропускная способность каналов, объем оперативного хранения позволяют наращивать число рабочих мест в диапазоне от 20 до 200 000 с помощью простого добавления процессорных плат, модулей оперативной памяти и дисковых накопителей. Десятки мэйнфреймов могут работать совместно под управлением одной операционной системы над выполнением единой задачи.
Суперкомпьютеры - это очень мощные компьютеры с производительностью свыше 100 мегафлоп (1 мегафлоп - миллион операций с плавающей точкой в секунду). Они называются сверхбыстродействующими. Эти машины представляют собой многопроцессорные и (или) многомашинные комплексы, работающие на общую память и общее поле внешних устройств. Различают суперкомпьютеры среднего класса, класса выше среднего и переднего края(High end). Отличительной особенностью суперкомпьютеров являются векторные процессоры, оснащенные аппаратурой для параллельного выполнения операций с многомерными цифровыми объектами - векторами и матрицами. В них встроены векторные регистры и параллельный конвейерный механизм обработки. Наиболее распространенные суперкомпьютеры - массово-параллельные компьютерные системы. Они имеют десятки тысяч процессоров, взаимодействующих через сложную, иерархически организованную систему памяти.
Суперкомпьютеры используются для решения сложных и больших научных задач (метеорология, гидродинамика и т. п.), в управлении, разведке, в качестве централизованных хранилищ информации и т. д. Элементная база - микросхемы сверхвысокой степени интеграции.
Типы портативных компьютеров.
Портативные компьютеры обычно нужны руководителям предприятий, менеджерам, ученым, журналистам, которым приходится работать вне офиса - на презентациях или во время командировок. Микрокомпьютер, настольный или портативный компьютер, который использует микропроцессор в качестве единственного центрального процессора, выполняющего все логические и арифметические операции. Микрокомпьютеры относят к вычислительным машинам четвертого и пятого поколения. Помимо ноутбуков, к переносным микрокомпьютерам относят и карманные компьютеры - палмтопы. Основными признаками микрокомпьютеров являются шинная организация системы, высокая стандартизация аппаратных и программных средств, ориентация на широкий круг потребителей.

Классификация ЭВМ по назначению

Универсальные ЭВМ – для решения широкого круга задач.

Проблемно-ориентированные ЭВМ – служат для решения более узкого круга задач связанных, как правило, с управлением технологическими объектами, регистрацией, накоплением и обработкой относительно небольших объемов данных.

Специализированные ЭВМ – используются для решения узкого круга задач или реализации строго определенной группы функций.

Классификация ЭВМ по размерам и функциональным возможностям.

Супер ЭВМ - вычислительная машина, значительно превосходящая по своим техническим параметрам большинство существующих компьютеров. Из-за большой гибкости самого термина до сих пор распространены довольно нечёткие представления о понятии «суперкомпьютер». В общем случае, суперкомпьютер - это компьютер значительно более мощный, чем доступные для большинства пользователей машины. При этом, скорость технического прогресса сегодня такова, что нынешний лидер легко может стать завтрашним аутсайдером. Архитектура также не может считаться признаком принадлежности к классу суперкомпьютеров. Ранние компьютеры CDC были обычными машинами, всего лишь оснащёнными быстрыми для своего времени скалярными процессорами, скорость работы которых была в несколько десятков раз выше, чем у компьютеров, предлагаемых другими компаниями. Большинство суперкомпьютеров 70-х оснащались векторными процессорами, а к началу и середине 80-х небольшое число (от 4 до 16) параллельно работающих векторных процессоров практически стало стандартным суперкомпьютерным решением. Конец 80-х и начало 90-х годов охарактеризовались сменой магистрального направления развития суперкомпьютеров от векторно-конвейерной обработки к большому и сверхбольшому числу параллельно соединённых скалярных процессоров.

Классификация ПЭВМ

Международная классификация ПЭВМ

ü массовые;

ü офисные (деловые);

ü портативные;

ü рабочие станции;

ü развлекательные.

ПЭВМ относится к классу микро ЭВМ и является машиной инди­видуального пользования. Это общедоступный и универсальный ин­струмент, многократно повышающий производительность интеллек­туального труда специалистов различного профиля. ПЭВМ предна­значена для автономной работы в диалоговом режиме с пользовате­лем. Общедоступность ПЭВМ определяется сравнительно низкой стоимостью, компактностью, отсутствием специальных требований как к условиям эксплуатации, так и степени подготовленности поль­зователя.

Основой ПЭВМ является микропроцессор (МП). Развитие техни­ки и технологии

ü микропроцессоров определило смену поколений ПЭВМ:

ü первое поколение (1975-1980 гг.) - на базе 8-разрядного МП;

ü второе поколение (1981-1985 гг.) - на базе 16-разрядного МП;

ü третье поколение (1986-1992 гг.) - на базе 32-разрядного МП;

ü четвертое поколение (1993 г. - по настоящее время) - на базе 64-разрядного МП.

Большую роль в развитии ПЭВМ сыграло появление компьютера IBM PC, произведенного корпорацией IBM (США) на базе микро­процессора InteI-8086 в 1981г. Этот персональный компьютер занял ведущее место на рынке ПЭВМ. Его основное преимущество - так называемая «открытая архитектура», благодаря которой пользователи: могут расширять возможности приобретенной ПЭВМ, добавляя раз­личные периферийные устройства и модернизируя компьютер. В дальнейшем другие фирмы начали создавать компьютеры, со­вместимые с IBM PC и, таким образом, компьютер IBM PC стал как бы стандартом класса ПЭВМ. В наши дни около 85 % всех продавае­мых ПЭВМ базируется на архитектуре IBM PC.

Бытовые ПЭВМ предназначены для массового потребителя, поэтому они должны быть достаточно дешевыми, надежными и иметь, как правило, простейшую базовую конфигурацию. Бытовые ПЭВМ используются в домашних условиях для развлечений (видеоигры), для обучения и тренировки, управления бытовой техни­кой. Однако архитектура этих машин позволяет подключать их к ка­налам связи, расширять набор периферийного оборудования. При некоторой модернизации эти модели могут использоваться для инди­видуальной обработки текста, решения небольших научных и инже­нерных задач (например, отечественная ПЭВМ «Амата»). Бытовые ПЭВМ снабжаются пакетом игр, программным обеспечением ло­кальной сети и др. Фирмы предлагают за дополнительную плату на­растить комплектность компьютера НЖМД типа «винчестер», музы­кальной картой, монитором и т.д. Модель «Амата» легко превраща­ется в ПЭВМ общего назначения.

Персональные ЭВМ общего назначения применяются для решения задач научно-технического и экономического характера, а также для обучения и тренировки. Они размещаются на рабочих местах пользователей: на предприятиях, в учреждениях, в магазинах, на складах и т.п. Машины этого класса обладают достаточно большой емкостью оперативной памяти, имеют внешнюю память на гибких и жестких магнитных дисках, собственный дисплей. Интерфейсы позволяют подключать большое количество периферийных устройств, средства для работы в составе вычислительных сетей.

ПЭВМ общего назначения используются прежде всего пользова­телями-непрофессионалами. Поэтому они снабжаются развитым про­граммным обеспечением, включающим операционные системы, трансляторы с алгоритмических языков, пакеты прикладных про­грамм. В состав аппаратуры входят устройства для вывода как тек­стового, так и графического материала, принтеры с высоким качест­вом печати. Этот класс ПЭВМ получил наибольшее распространение на мировом рынке.