Схема интегратора на операционном усилителе. Схемы на оу с конденсаторами в цепи обратной связи

28.02.2019

Для выражения напряжения U ВЫХ необходимо знать длительность действия входного сигнала. Напряжение на разряженном конденсаторе составит:

U С = I 0 t 1 /C. (6.16)

где I 0 - ток через конденсатор; t 1 – постоянная времени интегрирования.

Для положительного напряжения U ВХ имеем: I ВХ = U ВХ /R.

Поскольку I ВЫХ = I 0 = I ВХ, то с учетом инверсии получим

U ВЫХ = - (1 / RC) ∫U ВХ dt + U Со (6.17)

Из соотношения следует, что U ВЫХ определяется интегралом (с обратным знаком) от U ВХ в интервале t o ÷t 1 , умноженном на масштабный коэффициент

(1 / RC); где U С o – напр. на конденсаторе в момент времени t o .

Недостаток схемы (рис. 6.2): если напряжение U ВХ на входе нарастает медленно, то U ВЫХ будет уменьшаться до тех пор, пока не достигнет величины отрицательного напряжения -U НАС насыщения ОУ. Это происходит потому, что по постоянному току интегратор работает как усилитель с разомкнутой петлей ОС (А→∞), т.к. сопротивление Х C по постоянному току стремится к максимуму

А = Х C /R 1 = (1/ω∙C)/R 1 . * (6.18)

Реальная схема интегратора способна пропускать постоянный ток с максимальным коэффициентом усиления.

С ростом частоты входного сигнала передаточная функция падает и К ≈ 1 за частотой среза (f СР).

Передаточная характеристика схемы в комплексной форме имеет вид:

W (ρ ) = -1/(ρ ∙R 1 ∙C 1) (6.19)

где ρ = j∙ω - оператор Лапласа.

и показывает, что U ВЫХ равно интегралу по времени от входного напряжения, взятого с обратным знаком. Если R ВХ > R 1 и К > 1, то

W (p) = - К/[(ρ R 1 ∙C 1)(К+1)] (6.20)

Чтобы понять, почему схема интегрирует, приведем некоторые соотношения, вытекающие из определения С. Величину С можно определить С = Q/U.

где Q – заряд; U – приложенное напряжение. Отсюда следует, что Q = C∙U и изменение заряда за единицу времени (т.е. ток через конденсатор) составит

i C = dQ/dt = C(dU/dt) (6.21)

Если ОУ близок к идеальному, т.е. i СМ = 0, А→∞ (без ОС) и U Диф = 0, то

i r = i С. Из соотношения (6.20) получим i С = dQ/dt = C∙(dU С /dt) = i r .

Ввиду того, что U r = 0, и U С = -U ВЫХ, то величина тока составит:

i C = -С∙dU Вых /dt = U 1 /R = i r . (6.22)

Разрешив это уравнение относительно dU ВЫХ, найдем

dU ВЫХ = - (1 / RC) ∫U ВХ dt. (6.23)

Пределами интегрирования является время t 0 и t 1 . Для вычисления интеграла от изменяющегося напряжения, надо выразить напряжение как функцию времени.

Однозвенный интегратор ведет себя как инерционное звено первого порядка (рис. 6.3). Если на входе в момент времени t = 0 напряжение U ВХ изменится скачком от 0 до значения U ВХ ≠0, то U Вых. изменится по закону (рис. 6.3).

U Вых.(t) = -U ВХ К(1- е - t/ RC)+U Вых.(0) е - t/ RC (6.24)

где RC = τ Э – эквивалентная постоянная времени

U Вых.(0) – начальное выходное напряжение при t = 0.

T/RC = -t/τ Э – эквивалентный коэфф. усиления.

На выходе напряжение изменяется по экспоненциальному закону для интегрирующей RC цепи.

Если время Т на участке (t 1 ÷t 2), в течение которого развивается эта экспонента, много меньше постоянной времени τ Э, то начальный участок экспоненты мало отличается от прямой линии. Если на вход интегратора подать сигнал sin частоты f Мин, то погрешность интегратора мала; а при f Мах – интегрирование максимально, т.к. “С” шунтирует выход и К U ОУ падает по экспоненте. При подаче на вход схемы прямоугольного сигнала на выходе будет формироваться пилообразное напр. при 1/f = Т > τ Э.

Пример: Определить величину и форму сигнала U ВЫХ интегратора через время t 1 = 3 мс, если на его вход поступает ступенчатый сигнал прямоугольной формы. Пусть : R 1 – 1 мОм; С 1 = 0,1 мкФ; U ВХ = 1В.

Решение : А) Записывая входной ступенчатый сигнал как функцию времени, получим U 1 = U, при t 1 ≥ t 0 , и U 1 = 0, при t 1 < t 0 .

Используя первое условие, интегрируем и получаем

U ВЫХ = -(1 / RC) ∫U 1 dt.= -(1 / RC)U 1 ∆t (6.25)

Изменение U ВЫХ во времени представляет собой наклонную прямую с полярностью, противоположной полярности U ВХ.

Для прям. имп. результат интегрирования имеет вид U ВЫХ = -(1 / RC)U 1 ∆t.

Б) Найдем значение U ВЫХ в пределах от t 0 до t 1 = 3 мс.

t1=3 мс 1 3 мс

U ВЫХ = -(1 / RC)U 1 t | = - ------------- 1 В | = - 10*1 В *0,003 С = 0,03 В = 30 мВ.

tо 1 мом * 0,1 мкф 0

Ошибку интегрирования можно уменьшить введением в цепь ООС параллельно конденсатору – сопротивление R ОС. Шунтирование цепи ООС через R ОС позволяет на НЧ ограничить напряжение ошибки.

ΔU Вых. = (R ОС /R 1)∙U СДВ, вместо ΔU Вых. = А∙U СДВ. (6.26)

Такое шунтирование ограничивает снизу область частот, в которой происходит интегрирование.

Например, на частоте f РАБ = 3/(2π∙R ОС C), точность интегрирования = 5%; увеличение рабочей частоты

f > 1/(2π∙R ОС ∙C) приводит к увеличению точности.

При введении R ОС расширяется диапазон постоянного коэффициента усиления на НЧ. Схему суммирующего интегратора можно выполнить в инверсном и прямом включении (рис.6.4,а):

U ВЫХ = - (1 / RC) ∫(U 1 +U 2 +U 3)dt. (6.27)

Если R 1 = R 2 = R 3 , и i C = i·R 1 = i·R 2 = i·R 3 , то выражение имеет вид

∆U ВЫХ = -(U 1 +U 2 +U 3)/(R 1 ·C). (6.28)

(отношение U/t – есть скорость нарастания выходного напряжения)

Если С включить последовательно с R ОС (рис. 6.4,б) то U ВЫХ оказывается линейной функцией U ВХ и интеграла по времени от U ВХ. Передаточная функция схемы:

U ВЫХ = [-(R ОС /R)U 1 ]-(1 / RC) ∫U 1 dt. (6.29)

Дифференциальная схема (рис. 6.4,в) формирует интеграл от разности 2-х вх-х сигналов:

U ВЫХ = (1 / RC)∫ (U 2 -U 1)dt. (6.30)

Интегрирование является одной из основных математических операций, и ее электрическая реализация означает построение схемы, в которой скорость изменения выходного напряжения пропорциональна входному сигналу. В графической интерпретации выходное напряжение оказывается пропорциональным площади под кривой входного напряжения. Те или иные разновидности интеграторов встречатюся во многих аналоговых системах. Наиболее часто они применяются в активных фильтрах, а также в системах автоматического регулирования для интегрирования сигнала ошибки. Интегратор можно рассматривать как ФНЧ первого порядка, у которого наклон АЧХ составляет -20 дБ/декада. Две простейшие схемы интеграторов представлены на рис. 7.1.

Рис. 7.1. Основные схемы интеграторов: а) простой RC-интегратор, б) интегратор с ОУ.

У простого RC-интегратора, показанного на рис. 7.1 а, имеются два серьезных недостатка. Во-первых, он значительно ослабляет входной сигнал и, во-вторых, имеет высокое выходное сопротивление. В результате такая схема на практике применяется редко. Стандартный интегратор с ОУ, показанный на рис. 7.1 б, содержит входной резистор и конденсатор Си включенный в цепь обратной связи ОУ А. Ток, поступающий на инвертирующий вход ОУ, определяется сопротивлением резистора За счет большого собственного коэффициента усиления ОУ его инвер тирующий вход оказывается виртуальной землей. В результате входной ток определяется только входным напряжением и резистором Следо ватсльно, практически весь входной ток (с точностью до входною тока ОУ - прим. ред.) протекает через конденсатор заряжая его; при этом реализуется операция интегрирования.

Передаточная функция интегратора:

Диапазон рабочих частот:

нижияя частота:

верхняя частота:

где - коэффициент усиления ОУ, а - произведение коэффициента усиления на полосу пропускания.

Входное сопротивление схемы:

Скорость дрейфа выходного напряжения (наихудший случай):

из-за напряжения смещения и входного тока смещения :

из-за утечки через сопротивление

из-за входного дифференциального сопротивления ОУ :

Конечное значение выходного напряжения смещения:

Основной проблемой в аналоговых интеграторах является дрейф выходного напряжения, вызванный зарядом конденсатора Q токами утечки, входными токами смещения и входным напряжением смещения ОУ . Схема фактически интегрирует "неидеальности" ОУ и других элементов. Если не принять никаких мер, на выходе схемы появится большое непостоянное смещение, которое, в конечном счете, приводит к насыщению ОУ. Можно предложить три способа решения этой проблемы.

Если интегратор является частью большей схемы, охваченной общей обратной связью, например фильтра с переменными параметрами из гл. 6, то дрейф интегратора не вызывает особых осложнений, так как компенсируется общей обратной связью.

Если интегрируемый сигнал не содержит постоянной составляющей, то в цепь обратной связи ОУ можно специально включить резистор показанный на рис. 7.1. Этот резистор обеспечивает путь для входных токов смещения в обход конденсатора Си Такой прием используется только в случаях, когда нижняя частота спектра входных сигналов превышает 1 Гц, так как при меньших частотах понадобится слишком большой резистор Сопротивление должно быть с одной стороны достаточно малым, чтобы уменьшить выходное смещение до приемлемого уровня, а с другой - достаточно большим для того, чтобы схема работала как интегратор во всем диапазоне частот входного сигнала.

Если требуется интегрировать сигналы Постоянного тока, в цепь обратной связи можно ввести ключ сброса для периодического разряда конденсатора

Чтобы продемонстрировать величину возможного дрейфа, предположим, что используется КМОП-ОУ с периодической коррекцией дрейфа с конденсатором обратной связи и резистором . Для таких ОУ типичными значениями являются . При таких параметрах схемы скорость дрейфа выходного

напряжения составит 0,4 мВ/час. Для снижения дрейфа необходимо тщательно продумать монтаж и конструкцию интегратора, так как, кроме входного тока смещения инвертирующего входа интегратора, на работу схемы оказывают влияние и другие токи утечки. Рекомендуется предусмотреть охранные кольца с обеих сторон платы вокруг инвертирующего входа. Плату необходимо тщательно очистить. Чтобы достичь сверхмалых токов утечки при монтаже инвертирующего входа интегратора можно использовать изолирующие фторопластовые стойки.

Если для разряда конденсатора применяется аналоговый ключ, его собственный ток утечки должен быть меньше входного тока ОУ. Для уменьшения токов утечки можно использовать последовательное соединение полевых транзисторов или аналоговых ключей.

Идеальный интегратор имеет частотную характеристику с постоянной крутизной спада -20 дБ/декада во всем диапазоне частот. Характеристики реальных интеграторов отличаются от идеальных, что показано на рис. 7.2 для случая малых входных сигналов. Нижняя рабочая частота определяется либо конечным коэффициентом усиления ОУ, либо конечным значением сопротивления утечки Интегратор может оказаться неработоспособным на низких частотах из-за большого выходного дрейфа. Верхняя рабочая частота интегратора ограничена конечным произведением коэффициента усиления на ширину полосы пропускания ОУ. Чтобы схема работала как интегратор, спектр входного сигнала должен с определенным запасом лежать в рабочем диапазоне частот (например, в 10 раз выше нижней и ниже 1/10 верхней предельных частот).

Как было отмечено, верхний предел частотной характеристики интегратора ограничивается конечной шириной полосы пропускания ОУ, который создает дополнительный полюс на АЧХ на частоте, примерно равной , где - произведение коэффициента усиления на ширину полосы пропускания ОУ. Этот дополнительный полюс вызывает появление на высоких частотах погрешности фазового сдвига и коэффициента усиления. Один из способов коррекции этой погрешности состоит во включении небольшого конденсатора параллельно резистору для устранения дополнительного полюса. Учитывая, что значение выбирается из условия Добиться полной коррекции трудно, так как точное значение как правило, неизвестно; этим способом можно уменьшить погрешности примерно на порядок, но при слишком большом значении схема может возбудиться.

В случае больших входных сигналов в схеме появляются искажения, связанные с ограниченной скоростью нарастания выходного напряжения ОУ. Необходимо убедиться, что максимальная скорость изменения выходного напряжения интегратора не превышает скорости нарастания выходного напряжения ОУ, и не ограничивается величиной тока, которым

Рис. 7.2. Частотная характеристика интегратора для малых сигналов.

ОУ может заряжать емкостную нагрузку. Особенно это важно в быстродействующих схемах при больших емкостях конденсатора Q. Максимальная скорость изменения выходного напряжения ограничивается величиной где - максимальный выходной ТОК ОУ, - емкость нагрузки.

Рис. 7.3. Применение Т-образного соединения резисторов.

изолированы друг от друга, возможно, с применением защитных печатных дорожек. Сопротивления утечки и емкости, параллельные резисторам в, оказывают меньшее влияние, так как оба эти резистора могут иметь сравнительно небольшие сопротивления, в чем, собственно, и заключается преимущество Т-образного соединения. Отметим, что Т-образное соединение можно использовать и для получения больших эквивалентных сопротивлений резистора

Базовую схему интегратора легко видоизменить для интегрирования суммы нескольких сигналов, подаваемых на инвертирующий вход (рис. 7.4). Наибольшее число сигналов ограничивается суммарной проводимостью резисторов, присоединенных к инвертирующему входу; соответствующее эквивалентное сопротивление равно

Это значение подставляется вместо в расчетное соотношение для выходного напряжения смещения; из него следует, что увеличение количества входов увеличивает дрейф выходного напряжения.

Для интегрирования разности двух сигналов применяется схема, показанная на рис. 7.5. Она очень похожа на схему дифференциального усилителя, но в ней два резистора заменены на два конденсатора. В схеме требуется тщательное согласование резисторов и конденсаторов, иначе мы получим плохой коэффициент ослабления синфазного сигнала (КОСС). Значение КОСС (комплексное - прим. ред.) при рассогласовании элементов определяется выражением:

где - разность постоянных времени Дрейф выходного напряжения описывается выражением:

Рис. 7.4. Суммирующий интегратор

Рис. 7.5. Интегрирование разности двух входных сигналов.

Рис. 7.6. Дифференциальный интегратор с высоким КОСС.

Если требуется дифференциальный интегратор с высоким КОСС, к суммирующему интегратору подключается еще один ОУ, действующий как инвертор (рис. 7.6). КОСС этой схемы намного выше, так как он зависит только от согласования резисторов, а не конденсаторов.

Для получения неинвертирующего интегратора можно либо заземлить инвертирующий вход дифференциального интегратора (рис. 7.5), либо включить после интегратора инвертирующий каскад. Инвертор лучше включать после интегратора для сохранения динамического диапазона (по скорости нарастания выходного напряжения - прим. ред.), поскольку интегратор ослабляет высокочастотные сигналы.

Исключив входной резистор (рис. 7.7 а), базовый интегратор можно превратить в интегратор тока (см. гл. 3 об усилителях заряда). Можно построить также дифференциальный интегратор тока (рис. 7.7 б). Дифференциальный интегратор тока имеет несколько серьезных недостатков, таких, как необходимость тщательного согласования конденсаторов и применение источника тока с высоким выходным сопртивлением. Эти проблемы решаются включением еще одного ОУ (рис. 7.7 в); в этом случае один ОУ действует как интегратор тока, а дополнительный - как токовое зеркало.

На рис. 7.8 приведены две Схемы для сложения интеграла от входного сигнала с самим сигналом. Надо иметь в виду, что скорость дрейфа выходного напряжения в этих схемах такая же, как в базовом интеграторе.

Если необходимо произвести операцию двойного интегрирования, например, выходного сигнала акселерометра для определения смещения, вместо использования двух интеграторов рассмотрим вариант применения ФНЧ второго порядка с наклоном АЧХ -40 дБ/декада. Реализующая этот вариант схема представлена на рис. 7.9.

Рис. 7.7. Интеграторы тока: а) простой с виртуальной землей, б) дифференциальный, в) дифференциальный с виртуальной землей.

Схема описывается следующей передаточной функцией:

При выборе компонентов - (при этом полюсы и нули компенсируются), получим:

Рис. 7.8. Суммирование входного сигнала и его интеграла: а) неинвертирующее, б) инвертирующее.

Рис. 7.9. Применение фильтра нижних частот в качестве двойного интегратора.

Отметим, что компенсация полюсов и нулей происходит на. частоте, которая обычно близка к середине рабочего диапазона частот. Для получения хорошей компенсации требуется очень точное согласование элементов. Дрейф выходного напряжения описывается выражением:

Другой способ интегрирования аналогового сигнала с использованием элементов цифровой техники показан на рис. 7.10. Здесь входной сигнал преобразуется в частоту с помощью преобразователя напряжения в частоту

Рис. 7.10. Цифро-аналоговый интегратор.

ПНЧ). После этого интеграл от входного сигнала определяется путем подсчета импульсов выходной частоты ПНЧ с помощью двоичного счетчуса. Значение интеграла преобразуется в аналоговую форму с помощью ЦАП. Достоинство этой схемы состоит в том, что значение интеграла хранится не в виде заряда на конденсаторе, а в счетчике в цифровом виде и не подвержено дрейфу.

Энциклопедичный YouTube

    1 / 1

    Динамичный интегратор «Энвижн Груп»

Субтитры

Математическое описание

Математическая модель интегратора имеет вид:

y (t) = k ∫ 0 t 1 x (t) d t + y 0 {\displaystyle y(t)=k\int \limits _{0}^{t_{1}}x(t)\,dt+y_{0}} , где x (t) {\displaystyle x(t)} - входная функция времени, y (t) {\displaystyle y(t)} - выходная функция времени - результат интегрирования за время от до t = t 1 {\displaystyle t=t_{1}} , k {\displaystyle k} - коэффициент пропорциональности, имеет размерность обратную времени, y 0 {\displaystyle y_{0}} - начальное значение выходной переменной в момент времени t = 0 {\displaystyle t=0} .

Типы

Аналоговые

В этих приборах входная величина представлена в аналоговом виде, но выходная величина не обязательно аналоговая, даже чаще представлена в цифровом виде, например, в бытовых счетчиках.

Механические вычислительные интеграторы

Исторически первые интеграторы для вычислений. Представляли собой механические устройства, где величины представлялись в виде углов поворотов и угловых скоростей различных валов, шестерён, фигурных кулачков для вычисления функций. В годы Первой мировой войны широко использовались в приборах управления стрельбой, например, корабельных орудий и приборах управления зенитным огнём .

Со временем в подобные вычислители стали вводить различные электромеханические устройства, электрические автоматические следящие системы. Расцвет таких вычислителей с интеграторами пришёлся на годы Второй мировой войны и первые послевоенные годы. Например, вычислители автоматических оптических бомбометательных прицелов бомбардировщиков B-29 (в прицеле ОБП-48 Ту-4) были электромеханическими.

В различные приборы учета расхода и сейчас входят механические интеграторы в виде механических счётчиков - нескольких сцеплённых счётных цифровых колец.

Пневматические интеграторы

Принцип действия этих интеграторов основан на вытеснении жидкости из мерного объёма, как, например в мерных газовых бюретках, всплывании мерных сосудов или перемещений поршня, снабжённого проградуированной шкалой . В этих приборах выполняется интегрирование объёмного расхода газа.

Гидравлические интеграторы

По сути объём жидкости в некотором сосуде является интегралом от расхода жидкости в этот сосуд. Если снабдить сосуд шкалой, проградуированной, например, в единицах объёма, то получается простейший интегратор расхода жидкости.

Такой интегратор применялся в водяных часах - клепсидре , изобретённых ещё в античные времена .

Электронные аналоговые интеграторы

Сейчас это наиболее распространённый тип интеграторов. Мало типов радиотехнических или электронных устройств, где бы не применялись такие интеграторы. Схемотехнически строится на активных и пассивных компонентах. В зависимости от конкретной задачи, обеспечения нужной точности интегрирования, удобства применения, стоимости, строится по схемам различной сложности.

В простейшем случай представляет собой RC-фильтр нижних частот - соединение конденсатора и резистора как показано на рисунке. Дифференциальное уравнение, описывающее эту цепь:

I = C d U a d t = U e − U a R {\displaystyle I=C{\frac {dU_{a}}{dt}}={\frac {U_{e}-U_{a}}{R}}} ,

где I {\displaystyle I} - ток цепи, входной ток, C {\displaystyle C} - ёмкость конденсатора, R {\displaystyle R} - сопротивление резистора, - входное напряжение интегрирующей цепочки, U a {\displaystyle U_{a}} - выходное напряжение.

Общее решение этого уравнения при произвольном изменении U e {\displaystyle U_{e}} :

U a (t) = 1 R C ∫ − ∞ t U e (τ) e − (τ − t) / R C d τ {\displaystyle U_{a}(t)={\frac {1}{RC}}\int \limits _{-\infty }^{t}{U_{e}({\tau })}e^{-(\tau -t)/RC}\,d{\tau }} .

Произведение R C = T {\displaystyle RC=T} имеет размерность времени и его называют постоянной времени RC -цепи. Из приведённой формулы очевидно, что простейшая RC -цепь только приближённо выполняет функцию интегрирования из-за экспоненциального сомножителя в подинтегральном выражении. Точность интегрирования повышается при стремлении постоянной времени к бесконечности, что стремит экспоненту к 1. Но при этом выходное напряжение стремится к 0. Таким образом, при повышении точности интегрирования существенно снижается выходное напряжение простейшей интегрирующей цепи, что во многих практических применениях неприемлемо.

Для устранения этого недостатка в схемы интеграторов включают активные электронные компоненты . Простейший интегратор такого типа можно построить на биполярном транзисторе , включённом по схеме с общим эмиттером . В этой схеме значительно повышена точность интегрирования, так как напряжение база-эмиттер при изменении входного тока базы изменяется незначительно и приблизительно равно напряжению на прямосмещённом полупроводниковом p-n переходе . Если входное напряжение база-эмиттер пренебрежимо мало по сравнению с входным напряжением, то точностные свойства такого интегратора приближаются к свойствам идеального интегратора. Нужно отметить, что этот интегратор инвертирующий, то есть при подаче положительного напряжения на вход выходной сигнал будет уменьшаться.

Дальнейшее повышение точности электронных аналоговых интеграторов можно достичь применяя в качестве активных компонентов операционные усилители (ОУ). Упрощённая схема такого интегратора приведена на рисунке. Идеальный ОУ имеет бесконечный коэффициент усиления и бесконечное входное сопротивление (нулевой входной ток), современные реальные ОУ по этим параметрам приближаются к идеальным - имеют коэффициент усиления более нескольких сотен тысяч и входные токи менее 1 нА и даже пА. Поэтому при упрощенном анализе цепей с ОУ обычно допускают, что ОУ идеальный.

Цифровые интеграторы

В этих интеграторах и входной и выходной сигналы представлены в виде цифровых кодов. По своей сути являются сумматорами с накоплением. На псевдокоде их работу можно описать так:

Выход_интегратора:= Выход_интегратора + Вход * Интервал_выборки

Интервал выборки - время от момента получения предыдущего значения до момента получения текущего значения. Не обязательно, чтобы интервал выборки являлся истинным временем. При математическом моделировании реальных процессов (физических, биологических, др.) это может быть масштабированный временной интервал (растянутый или, наоборот, сжатый относительно истинного моделируемого времени) или даже величина невременно́й природы.

Цифровые интеграторы могут быть построены как аппаратно - в виде сумматоров с обратной связью, так и программно.

При аппаратной реализации интегратора по типу сумматора различают:

  • интегратор с параллельным переносом;
  • интегратор с последовательным переносом;
  • интегратор следящий.

Применение интеграторов

Трудно перечислить все области использования интеграторов, вот некоторые из них.

  • В инерциальных навигационных системах, например, летательных и космических аппаратов, боевых ракет. Двойное интегрирование сигналов датчиков ускорений и датчиков угловых ускорений позволяет вычислить координаты объекта и направления осей объекта не прибегая к внешним наблюдениям.
  • При учёте потребления веществ, сыпучих, жидких и газообразных сред.
  • Гутников В. С. Интегральная электроника в измерительных устройствах. 2-е изд., перераб. и доп. Л.: Энергоатомиздат. Ленингр. отделение, 1988. - 304 с.: илл.
  • Новицкий П. В. , Кнорринг В. Г. , Гутников В. С. Цифровые приборы с частотными датчиками. Л., «Энергия», 1970. - 424 с. илл.
  • Боярченков М. А., Черкашина А. Г. Магнитные элементы автоматики и вычислительной техники. Учебное пособие для студентов высших учебных заведений по специальности «Автоматика и телемеханика» вузов. М., «Высшая школа», 1976. - 383 с. илл.
  • Степаненко И. П. Основы теории транзисторов и транзисторных схем, изд. 3-е, перераб. и доп. М., «Энергия», 1973. - 608 с. илл.

Общие сведения

Подключение к ОУ цепи частотно-зависимой (комплексной) обратной связи позволяет создавать устройства, обладающие усилением и частотной избирательностью. Их частотная и фазовая характеристики определяются только видом и параметрами цепи обратной связи. К таким устройствам относятся интеграторы.

Интегратором называется устройство на основе операционного усилителя, выходной сигнал которого пропорционален интегралу от входного. Если обратная связь, которой охвачен ОУ, образуется конденсатором, то схема выполняет математическую операцию интегрирования по времени. Другими словами, она действует как накопитель, в котором входной сигнал суммируется на заданном отрезке времени. На основе операционных усилителей можно строить почти идеальные интеграторы на которые не распространяется ограничение «.

Интегратор на операционном усилителе можно считать точным в силу очень большого коэффициента усиления (сотни тысяч) и очень малых входных токов (доли наноампера). При этом выходное напряжение оказывается практически равным минус напряжению на конденсаторе, ток через конденсатор - практически равным току через резистор и напряжение на резисторе - практически равным входному. Интегрирование можно представлять себе как определение площади под кривой. Поскольку интегратор на операционном усилителе производит действия над напряжениями в течение некоторого периода времени, результат его работы можно интерпретировать как сумму напряжений за некоторое время.

Принципиальные схемы и основные выражения

Схема интегратора на операционном усилителе приведена на рисунке 2.1.

Рисунок 2.1 - Интегратор на основе операционного усилителя

Математическую модель интегратора можно записать в таком виде:

где: x(t) - входная функция времени;

y(t) - выходная функция времени;

k - коэффициент передачи;

y0 - начальное значение выходной переменной.

В связи с тем что инвертирующий вход имеет потенциальное заземление, выходное напряжение определяется следующим образом:

Входным сигналом может быть и ток, в этом случае резистор R не нужен.

Основные проблемы и способы их решения

Основной проблемой в интеграторах является дрейф выходного напряжения, вызванный зарядом конденсатора, токами утечки, входными токами смещения и входным напряжением смещения ОУ. Если не принять никаких мер, на выходе схемы появится большое непостоянное смещение, которое, в конечном счете, приводит к насыщению ОУ. В представленной здесь схеме (см. рисунок 2.1) тоже присутствует этот недостаток - тенденция к дрейфу. Это нежелательное явление можно ослабить, если использовать ОУ на полевых транзисторах, отрегулировать входное напряжение сдвига ОУ и выбрать большие величины для R и С. Но на практике можно прибегнуть к сбросу на нуль интегратора с помощью переключателя подсоединенного к конденсатору. На рисунке 2.2 показан интегратор с переключателем для сброса.

Рисунок 2.2 - Интегратор с переключателем для сброса на нуль

Если остаточный дрейф по-прежнему слишком велик для конкретного случая использования интегратора, то к конденсатору С следует подключить большой резистор R2, который обеспечит стабильное смещение за счет обратной связи по постоянному току. Но следует указать что такое подключение приведет к ослаблению интегрирующих свойств на очень низкой частоте: . На рисунке 2.3 показано подключение резистора.

Рисунок 2.3 - Подключение резистора к схеме интегратора

Рассмотрев интегратор с переключателем на полевом транзисторе (см. рисунок 2.2), можно понять, что ток утечки перехода сток-исток2 2 Электрод, из которого в канал входят основные носители заряда, называют истоком. Электрод, через который из канала уходят основные носители заряда, называют стоком. протекает через суммирующий переход даже в том случае, когда полевой транзистор находится в состоянии ВЫКЛ. Эта ошибка может быть преобладающей в интеграторе в случае использования операционного усилителя с очень малым входным током и конденсатора с небольшой утечкой.

Применение интегратора на ОУ

Интегратор служит полезным источником линейно изменяющегося напряжения, необходимого для осциллографов в качестве сигнала развертки и используемого также при реализации некоторых методов аналого-цифрового преобразования. Если на вход интегратора подать неизменное по величине постоянное напряжения - , то на выходе получим:

На рисунке 2.4 показано линейно нарастающее напряжение с градиентом, как отклик интегратора на скачок напряжения. Когда на входе действует симметричное относительно земли периодическое прямоугольное колебание, это приводит к возникновению на выходе колебания треугольной формы.

Рисунок 2.4 - Линейно нарастающее напряжение, отклик интегратора

Интегратор так же можно использовать в схеме нужной для обнаружения ядерных частиц. Схема является зарядо-чувствительным усилителем или другими словами преобразователем заряда в напряжение у которой выходное напряжение пропорционально количеству заряда, поступившего на вход. В таком случае очень полезен интегратор на основе ОУ. В схеме представленной на рисунке 2.5 убирается резистор и входная клемма напрямую соединяется с инвертирующим входом.


Рисунок 2.5 - Электрометрический усилитель

В прошлый раз я пытался вкратце объяснить основные принципы работы операционных усилителей. Но я просто не могу отказать в просьбе о продолжении темы. На этот раз схемы немного сложнее, но постараюсь не растягивать нудные математические выводы.
Интеграторы и дифференциаторы
Представьте, что Вам приходится считать интеграл напряжения. Страшно, не правда ли? И кому это вообще надо?
Так вот, для этих целей как раз и нужен интегратор .
В общем случае (для идеального операционника) рассматривается этот вариант:

Помните формулу заряда конденсатора?

Учитывая, что заряд будет изменяться по времени, можем смело предположить:

Далее… Неинвертирующий вход подключен на «землю». Напряжение на конденсаторе равняется противоположному напряжению на выходе, другими словами
. Это значит, что

Далее, решая и интегрируя, получаем (почти) финальную формулу:

Это, так сказать, в общем виде. В итоге, хочу обратить внимание на то, что напряжение на выходе играет существенную роль для каждого момента времени t. Его мы возьмем как свободный элемент:

Логично предположить, что интеграция идет по времени от t0 до t1

Вот Вам задачка. Конденсатор разряжен. Выходное напряжение равно нулю. Схема выключена. Конденсатор имеет емкость 1мкФ. Резистор 30кОм. Входное напряжение сначала равно -2В, затем 2В. Полярность меняется каждую секунду. Иными словами, на вход мы подали генератор импульсов.
Итак, решаем. Собираем быстренько схему в Протеусе. Рисуем график. Заносим в качестве функций входное и выходное напряжения. Нажимаем «Симулировать график». Получаем:


Вышел «пилообразный» сигнал. Обращаем внимание, что конденсатор влияет на резкость спада. Он должен колебаться в разумных пределах, чтоб успевать заряжаться/разряжаться, и чтоб не разряжаться/разряжаться * слишком быстро. Кстати, логично будет предположить, что сигнал усиливается в пределах питания нашего ОУ.

Далее, перейдем к дифференциаторам .
Тут не сложнее, чем в интеграторах.
Дифференциатор:


А вот и формула аналогового вычисления:

И снова скучные формулы…
Ток через конденсатор равен

Раз операционный усилитель близок к идеальному, то можно предположить, что ток через конденсатор равен току через резистор.
, а значит, если подставить значение тока, то получаем:

Как и в предыдущем примере, рассмотрим более практический пример. Конденсатор емкостью 50мкФ. Резистор 30кОм. На вход подаем «пилу». (Честно говоря, в протеусе не получилось сделать пилу стандартными средствами, пришлось прибегнуть к инструменту Pwlin.
Как результат, получаем график:

Подведем итоги.
Интегратор. «Прямоугольник» -> «Пила»
Дифференциатор. «Пила» -> «Прямоугольник»
P.S. Дифференциаторы и интеграторы будут рассмотрены позже в совершенно ином обличии.

Компараторы
Компаратор - это такое устройство, которое сравнивает два входных напряжения. Состояние на выходе меняется скачкообразно в зависимости от того, какое напряжение больше. Тут нет ничего особенного, просто приведу пример. На первый вход подаем постоянное напряжение, равное 3В. На второй вход - синусоидальный сигнал с амплитудой 4В. Снимаем напряжение с выхода.


График содержит исчерпывающую информацию, которая не нуждается в комментариях:

Логарифмический и экспоненциальный усилители
Для получения логарифмической характеристики необходим элемент ею обладающий. Для таких целей вполне подходит диод или транзистор. Дабы не усложнять, далее будем использовать диод.
Для начала, как обычно, приведу схему…


… и формулу:

Обращаем внимание, что е - это заряд электрона, Т - температура в Кельвинах и k - постоянная Больцмана.
Снова придется вспомнить курс физики. Ток через полупроводниковый диод можно описать как:
(изображение сделал немного больше, т.к. степень у формулы получалась «криво»)
Тут U - напряжение на диоде. I0 - ток утечки при малом обратном смещении. Прологарифмируем и получим:

Отсюда получаем напряжение на диоде (которое идентично напряжению на выходе):

Стоит сделать заметку, что при температуре 20 градусов Цельсия:

Проверим, как работает эта схема графически. Запустим протеус. Настроим входной сигнал:


Ток на диоде будет изменятся следующим образом:


Напряжение на выходе изменяется по логарифмическому закону:

Следующий пункт - экспоненциальный усилитель я оставлю без комментариев. Надеюсь, тут все будет понятно.

Вместо заключения

В этой части я старался свести математические выводы к минимуму, а сделать упор на практическое применение. Надеюсь, Вам понравилось:-)

*UPD.: Время заряда/разряда конденсатора определяется как: , где - это время переходного процесса. Для RC-цепи справедлива формула . За время Т конденсатор будет полностью заряжен/разряжен на 99%. Иногда для расчетов используют время 3