Первые программируемые машины. Поколения вычислительной техники

30.01.2019

Лекция № 3 Поколения и классификация ЭВМ

Выделяют пять поколений ЭВМ.

Первое поколение (1945-1954) характеризуется появлением техники на электронных лампах. Это эпоха становления вычислительной техники. Большинство машин первого поколения были экспериментальными устройствами и создавались с целью проверки тех или иных теоретических положений. Вес и размеры этих компьютеров были такими, что они нередко требовали отдельных зданий.

Они делятся на концентрические цилиндрические круги, которые начинаются снаружи диска и заканчиваются внутри. Кроме того, эти цилиндры разделены на сектора, число которых определяется типом диска и его форматом, причем все они фиксированного размера на любом диске. Цилиндры как сектора идентифицируются с рядом присвоенных им номеров, начиная с 1, так как число 0 каждого цилиндра зарезервировано для целей идентификации, а не для хранения данных. Обычно системы содержат более одного блока внутри, поэтому число лиц может быть больше двух.

Они идентифицируются с числом, равным 0 для первого. В общем, он равен гибким дискам. Емкость диска определяется путем умножения количества граней на количество дорожек на лицо и на количество секторов на дорожку до общего количества байтов на сектор.

Основоположниками компьютерной науки по праву считаются Клод Шеннон - создатель теории информации, Алан Тьюринг - математик, разработавший теорию программ и алгоритмов, и Джон фон Нейман - автор конструкции вычислительных устройств, которая до настоящего времени лежит в основе большинства компьютеров. В те же годы возникла еще одна новая наука, связанная с информатикой, - кибернетика - наука об управлении как одном из основных информационных процессов. Основателем кибернетики является американский математик Норберт Винер.

Другим общим устройством вывода является принтер, который позволяет получать на бумажной основе визуализированную, долговечную и переносимую копию информации, обрабатываемой компьютером. Наконец, мы можем упомянуть модем, который связывает два компьютера, преобразующих цифровые сигналы в аналоговые, чтобы данные могли быть переданы через.

Компьютерная система представляет собой сложную систему, которая может состоять из миллионов элементарных электронных компонентов. Этот многоуровневый комплекс сложных систем необходим для понимания их и их дизайна. На каждом уровне его и его функции анализируются в следующем смысле.

Во втором поколении (1955-1964) вместо электронных ламп использовались транзисторы, а в качестве устройств памяти стали применяться магнитные сердечники и барабаны - прототипы современных жестких дисков. Все это позволило сократить габариты и стоимость компьютеров, которые тогда впервые стали производиться на продажу.

Но главные достижения этой эпохи относятся к области программ. Во втором поколении впервые появилось то, что сегодня называется операционной системой. Тогда же были разработаны первые языки высокого уровня - Фортран, Алгол, Кобол. Два этих важных усовершенствования позволили значительно упростить и ускорить написание программ для компьютеров.

Структура: взаимосвязь между компонентами. Функция: Работа каждого отдельного компонента как части структуры. Из-за его особой важности рассматривается структура межсоединений типа шины. Теперь они повсюду, от дома до офиса. Он стал основным инструментом для повседневной деятельности, поскольку он позволяет вам работать, учиться и общаться с другими.

Разработчики смогли реагировать на различные виды использования и потребности людей. Ярким примером является то, как они уменьшили размер оборудования, чтобы они обеспечивали большую мобильность и комфорт тем, кто должен использовать свою информацию в разных местах, - говорит он.

При этом расширялась сфера применения компьютеров. Теперь уже не только ученые могли рассчитывать на доступ к вычислительной технике, поскольку компьютеры нашли применение в планировании и управлении, а некоторые крупные фирмы даже начали компьютеризировать свою бухгалтерию, предвосхищая этот процесс на двадцать лет.

В третьем поколении (1965-1974) впервые стали использоваться интегральные схемы - целые устройства и узлы из десятков и сотен транзисторов, выполненные на одном кристалле полупроводника (микросхемы). В то же время появилась полупроводниковая память, которая и до настоящего времени используется в персональных компьютерах в качестве оперативной.

«Эволюция процессоров была ключевой, поскольку в факторах формы или размеров меньших устройств они смогли предложить равную или большую мощность, чем раньше», - добавляет он. Освящение кабриолетов. На рынке вы можете найти эти устройства с мощными процессорами, идеально подходящими для профессионалов, но также и с более дешевыми процессорами, которые вполне могут удовлетворить потребности студентов, например, социальных пользователей.

Многие бренды решили уменьшить объем хранения этого оборудования с целью обеспечения большей мобильности. Эффективные и экономичные процессоры. Развитие технологии позволило оборудовать по довольно низким ценам и в то же время хорошо реагировать на требования пользователей, которые используют свои компьютеры для работы, серфинга в Интернете или игры в онлайн-игры, среди прочего.

В те годы производство компьютеров приняло промышленный размах. Фирма IBM первой реализовала серию полностью совместимых друг с другом компьютеров от самых маленьких, размером с небольшой шкаф (меньше тогда еще не делали), до самых мощных и дорогих моделей. Наиболее распространенным в те годы было семейство System/360 фирмы IBM, на основе которого в СССР была разработана серия ЕС ЭВМ. Еще в начале 1960-х гг. появились первые миникомпьютеры - маломощные компьютеры, доступные по цене небольшим фирмам или лабораториям. Мини-компьютеры были первым шагом на пути к персональным компьютерам, пробные образцы которых были выпущены только в середине 1970-х гг.

Эти устройства должны обладать высоким спросом в этом году, особенно потому, что многие родители решают купить компьютеры своим детям по прибытии в начале занятий, говорит эксперт. Интеграция процессоров. До того, как они заняли полные комнаты для работы, затем вышел рабочий стол, последовал за ноутбуками и недавно прибыл на 2-х направлениях. В настоящее время прогресс в технологии позволил компьютерам вписаться в ладонь.

Введение Использование компьютеров в современном и обычном значении этого слова приводит нас к мысли об интерактивности, компьютерах, связанных во всем мире, и одним щелчком мыши можно найти людей и сервисы, которые мы ищем. Однако появление вычислительной техники не имело главной цели для развлечения людей, а скорее для решения математических задач. Как следует из определения словаря Аврелиа, слово «вычисление» означает «вычисление, подсчет», и это было фундаментальную причину развития компьютеров, создавать машины, которые помогли бы ученым в их расчетах. Со временем необходимо было разработать новые методы и процессы для повышения эффективности вычислений. Одним из таких достижений было введение двоичной системы, разработанной фон Нейманом, который считал, что нынешние методы слишком неэффективны. Однако естественная эволюция вычислений не всегда осуществлялась эффективно, так как зачастую гений дизайнеров ограничивался технологическими ресурсами того времени, и было обычным явлением, что некоторые идеи не могли покинуть газету, но эти идеи играли фундаментальную роль в вычисление, поскольку позже они могут быть завершены или адаптированы для новых проектов. Эта статья призвана показать некоторые из наиболее важных эволюций в вычислительной области. Очевидно, что описание любых изменений в этой широкой области было бы исчерпывающей работой, поэтому в этой статье просто вкратце описываются некоторые радикальные изменения в вычислениях, такие как переход между механизированными компьютерами и их преемниками, Другие изменения, не столь существенные с 2-й общей точки зрения, не были рассмотрены, хотя они играют важную роль в вычислении, как мы ее знаем сегодня. Первым человеком, который разработал вычислительную машину, был французский ученый Блейз Паскаль. Этот калькулятор просто добавил и вычитал значения. Спустя 30 лет после изобретения Паскаля немецкий математик по имени Барон Готфрид Вильгельм фон Лейбниц разработал машину, которая, помимо добавления и вычитания, также имела возможность размножаться и делиться. Годы спустя профессор Кембриджского университета Чарльз Бэббидж, который также был изобретателем спидометра, разработал и построил машину различий. Хотя этот эксперимент мог только добавить и вычесть, он использовал простой алгоритм, используя полиномы. Изюминкой этой машины был вывод данных: она пробила результаты на медную пластину со стальным сверлом, являясь предшественником перфокарт и оптических дисков. Хотя машина отличий представляет собой прорыв, она никогда не была действительно функциональной с учетом ограничений технологии того времени. Однако Бэббидж не был удовлетворен ограничением собственной машины, поэтому, используя частные и государственные деньги, развивал аналитическую машину. Он состоял из четырех компонентов: хранилища, изобретательности, секции ввода и секции вывода. Большой дифференциал этой машины заключался в том, что она имела разные применения. В зависимости от предполагаемого использования машина может добавить два номера в хранилище, привести к мельнице, обработать информацию, выполнить расчет и отправить результат обратно на хранение. Поскольку машина была программируемой на понятном языке, программное обеспечение было необходимо. Тем не менее, Бэббидж так и не смог использовать аппаратное обеспечение в полной мере, так как в течение столетия он имел непредсказуемую точность в тысячах зубов, колес и передач. Следующий важный шаг в вычислении произошел в 1930-х годах с инженером-учеником по имени Конрад Зузе, который разработал автоматическую вычислительную машину с использованием электромагнитных реле. Система этого калькулятора была основана на двоичной арифметике и имела конденсаторы для памяти, которые были обновлены через регулярные промежутки времени, чтобы избежать их разрядки. Однако из-за ограничений аппаратного обеспечения машина никогда не работала. Для ввода и выхода данных использовались перфорированные бумажные ленты. Это было начало электронного века. 2 Первое поколение - клапаны со Второй мировой войной, произошел настоящий взрыв компьютерных проектов. Препер Экерт, при финансовой поддержке армии США. Он состоял из 1000 клапанов и 500 реле, потреблял 140 киловатт энергии и весил 30 тонн. Машина имела 20 регистров, каждая из которых способна хранить десятизначную десятичную цифру. У него было 000 ключей многопозиции, функция которых заключалась в программировании машины. Даже без использования в своих первоначальных целях Мохли и Эккерту было дано разрешение провести летний курс, чтобы описать свою работу другим ученым. 6 Фон Нейман понял, что программирование с помощью кабелей и коммутаторов было непрактичным, и вместо этого можно было представить цифру в памяти компьютера вместе с данными. Это изобретение революционизировало мир вычислений, и через 10 лет компьютеры на клапане были устаревшими. Использование одной шины было признано лучшим, и с тех пор было принято почти всеми маленькими компьютерами. У него были функциональные модули, ориентированные на дополнения, другие для умножения, среди прочих, и какой большой дифференциал заключался в том, что все могут проходить параллельно. Эта инкапсуляция позволила построить более мелкие компьютеры, быстрее и дешевле, чем их предшественники. Однако при разработке программного обеспечения для более мощной модели при переходе к посреднику оно может не соответствовать памяти. Однако эта стандартизация программного обеспечения считалась крупным достижением для вычислений. Важной особенностью 360 была его огромная память о стандартах того времени. В результате размер компьютеров уменьшился, и скорость обработки значительно увеличилась. Однако использование этих персональных компьютеров отличалось от научных вычислений. В то время как люди использовали компьютеры для обработки текстов, построения графиков и интерактивных применений, научные вычисления ориентированы на решение математических задач. 11 Сегодня вычисления становятся все более малыми, и его пропускная способность стала гигантской, неизмеримой. Заключение История вычислений - это не только факты, продемонстрированные в этой статье, которые представляют собой лишь несколько символических достижений в области вычислений в целом. Очевидно, что необходимо оставить в стороне важные вклады, такие как введение графического интерфейса, использование компьютерной графики, чтобы указать, что между одним поколением и другим были прыжки между компьютерами. С появлением интегральных схем удалось несколько раз улучшить использование компьютера, снизить затраты и повысить эффективность. До этого, однако, были гении, которые, ограниченные рудиментарной технологией в их распоряжении, достигли больших достижений, таких как разработка первых компьютеров, таких как создание Паскаля, которое, хотя и очень элементарно, было предтечей серии другие машины, каждый из которых улучшает внешний вид предыдущего. Благодаря этим улучшениям в каждом поколении компьютер в целом приближался к тому, что мы знаем сегодня, с персональными компьютерами, и все это началось с поиска метода, который облегчил бы выполнение математических операций. 13 Структурированная компьютерная организация. Термин обработка данных состоит из серии выполненных мероприятий с целью создания определенного расположения информации из других, полученных изначально.

Между тем количество элементов и соединений, умещающихся в одной микросхеме, постоянно росло, и в 1970-е гг. интегральные схемы содержали уже тысячи транзисторов.

В 1971 г. фирма Intel выпустила первый микропроцессор, который предназначался для только появившихся настольных калькуляторов. Это изобретение произвело в следующем десятилетии настоящую революцию. Микропроцессор является главной составляющей частью современного персонального компьютера.

На рубеже 1960 -70-х гг. (1969) появилась первая глобальная компьютерная сеть ARPA, прототип современной сети Интернет. В том же 1969 г. одновременно появились операционная система Unix и язык программирования С ("Си"), оказавшие огромное влияние на программный мир и до сих пор сохраняющие свое главенствующее положение.

Четвертое поколение (1975 -1985) характеризуется небольшим количеством принципиальных новаций в компьютерной науке. Прогресс шел в основном по пути развития того, что уже изобретено и придумано, прежде всего, за счет повышения мощности и миниатюризации элементной базы и самих компьютеров.

Самая главная новация четвертого поколения - это появление в начале 1980-х гг. персональных компьютеров. Благодаря им вычислительная техника становится по-настоящему массовой и общедоступной. Несмотря на то, что персональные и мини-компьютеры по-прежнему по вычислительной мощности отстают от солидных машин, большая часть новшеств, таких как графический пользовательский интерфейс, новые периферийные устройства, глобальные сети, связана с появлением и развитием именно этой техники.

Большие компьютеры и суперкомпьютеры, конечно же, продолжают развиваться. Но теперь они уже не доминируют в компьютерном мире, как было раньше.

Некоторые характеристики вычислительной техники четырех поколений приведены в таблице:

Характеристика Положение
первое второе третье Четвёртое
Основной элемент Электронная лампа Транзистор Интегральная схема Большая интегральная схема
Количество ЭВМ в мире, шт. Сотни Тысячи Десятки тысяч Миллионы
Размер ЭВМ Большой Значительно меньший Десятки тысяч Микро ЭВМ
Быстродействие (условное) операций/с Несколько единиц Несколько десятков единиц Несколько тысяч единиц Несколько десятков тысяч единиц
Носитель информации Перфокарта, перфолента Магнитная лента Диск Гибкий диск

Пятое поколение (1986 г. до настоящего времени) в значительной мере определяется результатами работы японского Комитета научных исследований в области ЭВМ, опубликованными в 1981г. Согласно этому проекту ЭВМ и вычислительные системы пятого поколения кроме высокой производительности и надежности при более низкой стоимости с помощью новейших технологий должны удовлетворять следующим качественно новым функциональным требованиям:

Обеспечить простоту применения ЭВМ путем реализации систем ввода/вывода информации голосом, а также диалоговой обработки информации с использованием естественных языков;

Обеспечить возможность обучаемости, ассоциативных построений и логических выводов;

Упростить процесс создания программных средств путем автоматизации синтеза программ по спецификациям исходных требований на естественных языках;

Улучшить основные характеристики и эксплуатационные качества вычислительной техники для удовлетворения различных социальных задач, улучшить соотношения затрат и результатов, быстродействия, легкости, компактности ЭВМ;

Обеспечить разнообразие вычислительной техники, высокую адаптируемость к приложениям и надежность в эксплуатации.

В настоящее время ведутся интенсивные работы по созданию оптоэлектронных ЭВМ с массовым параллелизмом и нейронной структурой, представляющих собой распределенную сеть большого числа (десятки тысяч) несложных микропроцессоров, моделирующих архитектуру нейронных биологических систем.



























































































































































































































































































































Назад Вперёд

Внимание! Предварительный просмотр слайдов используется исключительно в ознакомительных целях и может не давать представления о всех возможностях презентации. Если вас заинтересовала данная работа, пожалуйста, загрузите полную версию.

Цель урока:

  1. познакомить с историей развития вычислительной техники, с устройствами, являющимися предшественниками компьютеров и их изобретателями
  2. дать представление о связи развития ЭВМ с развитием человеческого общества,
  3. познакомить с основными особенностями ЭВМ разных поколений.
  4. Развитие познавательного интереса, умение использовать дополнительную литературу

Тип урока: изучение нового материала

Вид: урок-лекция

Программно-дидактическое обеспечение: ПК, слайды презентации с изображением основных устройств, портретов изобретателей и ученых.

План урока:

  1. Организационный момент
  2. Актуализация новых знаний
  3. Предыстория компьютеров
  4. Поколения ЭВМ (компьютеров)
  5. Будущее компьютеров
  6. Закрепление новых знаний
  7. Подведение итогов урока
  8. Домашнее задание

1. Организационный момент

Задача этапа : Подготовить учащихся к работе на уроке. (Проверить готовность класса к уроку, наличие школьных необходимых принадлежностей, посещаемость)

2. Актуализация новых знаний

Задача этапа : Подготовка учащихся к активному усвоению новых знаний, обеспечить мотивацию и принятие учащимися цели учебно – познавательной деятельности. Постановка целей урока.

Здравствуйте! Как вы думаете, какие технические изобретения особенно изменили способы труда человека?

(Ученики высказывают свои мнения по данному вопросу, по необходимости учитель их корректирует)

- Вы правы, действительно, основным техническим устройством, повлиявшим на труд человека, является изобретение компьютеров - электронно – вычислительных машин. Сегодня на уроке, мы с вами узнаем, какие вычислительные устройства предшествовали появлению компьютеров, как изменялись сами компьютеры, последовательность становления компьютера, когда машина предназначенная просто для счёта стала сложным техническим устройством. Тема нашего урока: «История вычислительной техники. Поколения компьютеров». Цель нашего урока: познакомиться с историей развития вычислительной техники, с устройствами, являющимися предшественниками компьютеров и их изобретателями познакомиться с основными особенностями ЭВМ разных поколений.

На уроке мы будем работать с помощью мультимедийной презентации, состоящей из 4-х разделов «Предыстория компьютеров», «Поколения компьютеров», «Галерея учёных», «Компьютерный словарь». В каждом разделе есть подраздел «Проверь себя» - это тест, в котором вы сразу узнаете результат.

3. Предыстория компьютеров

Обратить внимание учеников, что ЭВМ – это электронно-вычислительная машина, другое название «компьютер» или «computer» произошло от английского глагола «compute» – вычислять, поэтому слово «компьютер» можно перевести как «вычислитель». То есть и в слове ЭВМ и в слове компьютер главный смысл это вычисления. Хотя мы с вами хорошо знаем, что современные ЭВМ позволяют не только вычислять, но и создавать и обрабатывать тексты, рисунки, видео, звук. Заглянем в историю…

(параллельно оформляем в тетради таблицу «Предыстория компьютеров»)

«Предыстория компьютеров»

Древний человек счетом овладел раньше, чем письменностью. В качестве первого помощника в счете человек избрал свои пальцы. Именно наличие десяти пальцев легло в основу десятичной системы счисления. В разных странах говорят и пишут на разных языках, а считают одинаково. В 5-ом веке до н.э. греки и египтяне использовали для счета – АБАК – устройство, похожее на русские счеты.

Абак – греческое слово и переводится как счетная доска. Идея его устройства заключается в наличии специального вычислительного поля, где по определенным правилам перемещают счетные элементы. Действительно первоначально абак представлял собой доску, покрытую пылью или песком. На ней можно было чертить линии и перекладывать камешки. В Древней Греции абак служил преимущественно для выполнения денежных расчетов. В левой части подсчитывались крупные денежные единицы, а в правой – мелочь. Счет велся в двоично-пятеричной системе счислении. На такой доске было легко складывать и вычитать, добавляя или убирая камешки и перенося их из разряда в разряд.

Придя в Древний Рим абак, изменился внешне. Римляне стали изготавливать его из бронзы, слоновой кости или цветного стекла. На доске присутствовали два ряда прорезей, по которым можно было передвигать косточки. Абак превратился в настоящий счетный прибор, позволяющий представлять даже дроби, и был значительно удобнее греческого. Римляне называли это устройство calculare – «камешки». Отсюда произошел латинский глагол calculare – «вычислять», а от него – русское слово «калькулятор».

После падения Римской империи произошел упадок науки и культуры и абак был закрыт на некоторое время. Возродился он и распространился по Европе только в X веке. Абаком пользовались купцы, менялы, ремесленники. Даже спустя шесть столетий абак оставался важнейшим инструментом для выполнения вычислений.

Естественно, что в течение такого большого промежутка времени абак менял свой внешний вид и в XLL-XLLLвв.он приобрел форму так называемого счета на линиях, так и между ними. Такая форма счета в некоторых европейских странах сохранялась до конца XVLLLв. и лишь затем окончательно уступила место вычислениям на бумаге.

В Китае абак был известен с LV века до нашей эры. На специальной доске выкладывались счетные палочки. Постепенно их сменили разноцветные фишки, а в V веке появились китайские счеты – суан-пан. Они представляли собой раму с двумя рядами нанизанных на прутики косточек. На каждом прутике их было по семь. Из Китая суан-пан пришел в Японию. Произошло это в XVL веке и устройство получило название «соробан».

В Росси счеты появились в то же время, что и в Японии. Но русские счеты были изобретены самостоятельно, что доказывают следующие факторы. Во-первых, русские счеты очень сильно отличаются от китайских. Во-вторых, это изобретение имеет свою историю.

В России был распространен «счет костьми». Он был близок европейскому счету на линиях, но писцы использовали вместо жетонов плодовые косточки. В XVL возник дощаной счет, первый вариант русских счетов. Такие счеты хранятся сейчас в Историческом музе в Москве.

Счеты в России использовались почти 300 лет и сменили их только дешевые карманные калькуляторы.

Первое в мире автоматическое устройство, которое могло выполнять сложение, было создано на базе механических часов, и разработал его в 1623 году Вильгельм Шикард, профессор кафедры восточных языков в одном из университетов Германии. Но неоценимый вклад в развитие устройств помогающих выполнять вычисления, безусловно внесли Блез Паскаль, Годфрид Лейбниц и Чарльз Беббидж.

В 1642 году один из крупнейших ученых в истории человечества – французский математик, физик, философ и богослов Блез Паскаль изобрел и изготовил механическое устройство для складывания и вычитания чисел – АРИФМОМЕТР. ? Как вы думаете, из какого материала был сделан первый в истории арифмометр? (дерево).

Главная идея конструкции будущей машины была сформирована – автоматический перенос разряда. «Каждое колесо… некоторого разряда, совершая движение на десять арифметических цифр, заставляет двигаться следующее только на одну цифру» - эта формула изобретения утверждала приоритет Блеза Паскаля в изобретении и закрепила за ним право производить и продавать машины.

Машина Паскаля осуществляла сложение чисел на специальных дисках - колесиках. Десятичные цифры пятизначного числа задавались поворотами дисков, на которые были нанесены цифровые деления. Результат читался в окошечках. Диски имели один удлиненный зуб, чтобы можно было учесть перенос в следующий разряд.

Исходные числа задавались поворотами наборных колес, вращение ручки приводило в движение различные шестерни и валики, в итоге специальные колеса с цифрами показывали результат выполнения сложения или вычитания.

Паскаль был одним из величайших гениев человечества. Он был математиком, физиком, механиком, изобретателем, писателем. Его имя носят теоремы математики и законы физики. В физике есть единица измерения давления Паскаль. В информатике его имя носит один из самых популярных языков программирования.

В 1673 году немецкий математик и философ Готфрид Вильгельм Лейбниц изобрел и изготовил арифмометр, который мог не только складывать и вычитать числа, но и умножать и делить. Скудость, примитивность первых вычислительных аппаратов не помешала Паскалю и Лейбницу высказать ряд интересных идей о роли вычислительной техники в будущем. Лейбниц писал о машинах, которые будут работать не только с числами, но и сос словами, понятиями, формулами, могли выполнять логические операции. Эта идея большинству современников Лейбница казалась абсурдом. В 18 веке взгляды Лейбница были осмеяны великим английским сатириком Дж.Свифтом, автором известного романа «Путешествия Гулливера».

Лишь в 20-ом веке стала понятна значительность идей Паскаля и Лейбница.

Наряду с устройствами для вычислений развивались и механизмы для АВТОМАТИЧЕСКОЙ РАБОТЫ ПО ЗАДАННОЙ ПРОГРАММЕ (музыкальные автоматы, часы с боем, ткацкие станки Жаккарда).

В начале 19-го века английский математик Чарльз Беббидж, занимавшийся составлением таблиц для навигации, разработал ПРОЕКТ вычислительной «аналитической» машины, в основе которого лежал ПРИНЦИП ПРОГРАММНОГО УПРАВЛЕНИЯ (ППУ). Новаторская мысль Беббиджа была подхвачена и развита его ученицей Адой Лавлейс, дочерью поэта Джорджа Байрона – которая стала первой программисткой в мире. Однако практическая реализация проекта Беббиджа была невозможной из-за недостаточного развития промышленности и техники.

Основные элементы машины Беббиджа, присущие современному компьютеру:

  1. Склад – устройство, где хранятся исходные числа и промежуточные результаты. В современно компьютере это память.
  2. Фабрика – арифметическое устройство, в котором осуществляются операции над числами, взятые из Склада. В современном компьютере это Процессор.
  3. Блоки ввода исходных данных – устройство ввода.
  4. Печать результатов – устройство вывода.

Архитектура машины практически соответствует архитектуре современных ЭВМ, а команды, которые выполняла аналитическая машина, в основном включают все команды процессора.

Интересным историческим фактом является то, что первую программу для аналитической машины написал Ада Августа Лавлейс – дочь великого английского поэта Джорджа Байрона. Именно Беббидж заразил ее идеей создания вычислительной машины.

Идея программирования механических устройств с помощь перфокарты впервые была реализована в 1804 году в ткацком станке. Впервые применили их конструкторы ткацких станков. Преуспел в этом дел лондонский ткач Жозеф Мари Жаккард. В 1801 году он создал автоматический ткацкий станок, управляемый перфокартами.

Нить поднималась или опускалась при каждом ходе челнока в зависимости от того, есть отверстие или нет. Поперечная нить могла обходить каждую продольную той Ии иной стороны в зависимости от программы на перфокарте, создавая тем самым затейливый узор из переплетенных нитей. Такое плетение получило название «жаккард» и считается одним из самых сложных и запутанных плетений. Такой ткацкий станок, работающий по программе, был первым массовым промышленным устройством и считается одним из самых совершенных машин, когда-либо созданных человеком.

Идея записи программы на перфокарте пришла в голову и первой программистке Аде Августе Лавлейс. Именно она предложила использовать перфорированные карты в аналитической машине Беббиджа. В частности, в одном из писем она писала: «Аналитическая машина точно так же плетет алгебраические узоры, как ткацкий станок воспроизводит цвета и листья».

Герман Холлерит также использовал в своей машине перфокарты для записи и обработки информации. Перфокарты использовались и в компьютерах первого поколения.

До 40-х годов двадцатого века вычислительная техника представлялась арифмометрами, которые из механических стали электрическими, где электромагнитные реле затрачивали на умножение чисел несколько секунд, которые работали точно по тем же принципам, как и арифмометры Паскаля и Лейбница. Кроме того, они были очень ненадежны, часто ломались. Интересно, что однажды причиной поломки электрического арифмометра оказался мотылек, застрявший в реле, по-английски «мотылек, жук» – bug, отсюда появилось понятие «жучок» как неполадка в ЭВМ.

Герман Холлерит родился 29 февраля 1860 года в американском городе Буффало в семье немецких эмигрантов. Герману легко давались математика и естественные науки, и в 15 лет он поступил в Горную школу при Колумбийском университете. На способного юношу обратил внимание профессор того же университета и пригласил его после окончания школы в возглавляемое им национальное бюро по переписи населения. Перепись населения производилась каждые десять лет. Население постоянно росло, и ее численность в США к тому времени составляло около 50 миллионов человек. Заполнить на каждого человека карточку вручную, а затем подсчитать и обработать результаты, было практически невозможно. Этот процесс затянулся на несколько лет, почти до следующей переписи. Необходимо было найти выход из этой ситуации. Герману Холлериту идею механизировать этот процесс подсказал доктор Джон Биллингс, возглавлявший департамент сводных данных. Он предложил использовать для записи информации перфокарты. Свою машину Холлерит назвал табулятором и в 1887 году он был опробован в Балтиморе. Результаты оказались положительными, и эксперимент повторили в Сент-Луисе. Выигрыш во времени был почти десятикратным. Правительство США сразу же заключило с Холлеритом контракт на поставку табуляторов, и уже в 1890 году перепись населения прошла с использованием машин. Обработка результатов заняла менее двух лет и сэкономила 5 миллионов долларов. Система Холлерита не только обеспечивала высокую скорость, но и позволяла сравнить статистические данные по самым разным параметрам. Холлерит разработал удобный клавишный перфоратор, позволяющий пробивать около 100 отверстий в минуту одновременно на нескольких картах, автоматизировал процедур подачи и сортировки перфокарт. Сортировку осуществляло устройство в виде набора ящиков с крышками. Перфокарты продвигались по своеобразному конвейеру. С одной стороны карты находились считывающие штыри на пружинках, с другой – резервуар с ртутью. Когда штырь попадал в отверстие на перфокарте, то благодаря ртути, находящейся на другой стороне, замыкал электрическую цепь. Крышка соответствующего ящика открывалась и туда попадала перфокарта. Табулятор использовали для переписи населении в нескольких странах.

В 1896 году герма Холлерит сновал компанию Tabulating Machine Company (TMC) и его машины применялись повсюду – и на крупных промышленных предприятиях и в обычных фирмах. И в 1900 году табулятор использовался для переписи населения. переименовывает фирму в IBM (International Business Machines).

4. Поколения ЭВМ (компьютеров)

(параллельно оформляем записи в тетради и таблицу «Поколения ЭВМ (компьютеров)»)

ПОКОЛЕНИЯ ЭВМ
период Элементная база Быстро-действие (оп/сек.) Носители информации программы применение Примеры ЭВМ
I
II
III
IV
V

I поколение ЭВМ: В 30-х годах 20-го века в развитии физики произошел прорыв, коренной переворот. В вычислительных машинах стали использоваться уже не колеса, валики и реле, а вакуумные электронные лампы. Переход от электромеханических элементов к электронным сразу увеличил быстродействие машин в сотни раз. Первая действующая ЭВМ была построена в США в 1945 году, в университете штата Пенсильвания учеными Эккертом и Моучли и называлась ЭНИАК. Эта машина была построена по заказу министерства обороны США для средств ПВО, для автоматизации управления. Чтобы правильно рассчитать траекторию и скорость движения снаряда для поражения воздушной цели, надо было решить систему из 6-ти дифференциальных уравнений. Эту задачу и должна была решать первая ЭВМ. Первая ЭВМ занимала два этажа одного здания, весила 30 тонн и состояла из десятков тысяч электронных ламп, которые соединялись проводами, общая протяженность которых составляла 10 тысяч км. Когда ЭВМ ЭНИАК работала, электричество в городке отключалась, так много электричества потреблялось этой машиной, электронные лампы быстро перегревались и выходили из строя. Целая группа студентов занималась только тем, что непрерывно искала и заменяла перегоревшие лампы.

В СССР основоположником вычислительной техники стал Сергей Алексеевич Лебедев, создавший МЭСМ (малая счетная машина) 1951 год (Киев) и БЭСМ (быстродействующая ЭСМ) – 1952 г., Москва.

II поколение: В 1948 году американским ученым Уолтером Брайттеном был изобретен ТРАНЗИСТОР, полупроводниковый прибор, который заменил радиолампы. Транзистор был намного меньше радиолампы, был более надежным и потреблял намного меньше электричества, он один заменял 40 электронных ламп! Вычислительные машины стали меньше в размерах и значительно дешевле, их быстродействие достигло нескольких сот операций в секунду. Теперь ЭВМ были размером с холодильник, их могли приобрести и использовать научные и технические институты. В то время СССР шел в ногу со временем и выпускал ЭВМ мирового уровня БЭСМ-6.

III поколение: Вторая половина 20-го века характеризуется бурным развитием науки и техники, особенно физики полупроводников и с 1964 года транзисторы стали размещать на микросхемах, выполненных на поверхностях кристаллов. Это позволило преодолеть миллионный барьер в быстродействии.

IV поколение: Начиная с 1980 года ученые научились на одном кристалле размещать несколько интегральных микросхем, развитие микроэлектроники привело к созданию микропроцессоров. Кристалл ИС меньше и тоньше контактной линзы. Быстродействие современных ЭВМ исчисляется сотнями миллионов операций в секунду.

В 1977 году появился первый ПК (персональный компьютер) фирмы Apple Macintosh. С 1981 года лидером в производстве ПК стала фирма IBM (International Business Machine), эта фирма работала на рынке США еще с 19-го века и выпускала различные устройства для офисов – счеты, арифмометры ручки и т.д. и зарекомендовала себя как надежная фирма, которой доверяло большинство деловых людей в США. Но не только поэтому ПК IBM были намного популярнее, чем ПК Apple Macintosh. ПК Apple Macintosh представляли собой “черный ящик” для пользователя – он не разобрать модернизировать ПК, присоединять к ПК новые устройства, а ПК IBM были открыты для пользователя и тем самым позволяли собирать ПК как детский конструктор, поэтому большинство пользователей выбрали ПК IBM. Хотя мы с вами при слове ЭВМ представляем именно ПК, но существуют задачи, которые даже современные ПК решить не могут, с которыми могут справиться только суперЭВМ, быстродействие которых исчисляется миллиардами операций в секунду.

Научная школа Лебедева по своим результатам успешно соперничала с ведущей фирмой США IBM . Среди ученых мира, современников Лебедева, нет человека, который подобно ему обладал бы столь мощным творческим потенциалом, чтобы охватить своей научной деятельностью период от создания первых ламповых ЭВМ до сверхбыстродействующей суперЭВМ. Когда американский ученый Норберт Винер, которого называют «первый киберпророк», в 1960 году приезжал в СССР, он отметил « Они совсем немного отстают от нас в аппаратуре, зато далеко впереди нас в ТЕОРИИ автоматизации». К сожалению, в 60-х годах наука кибернетика подвергалась гонениям, как «буржуазная лженаука», ученых-кибернетиков сажали в тюрьмы, из-за чего советская электроника стала заметно отставать от зарубежной. Хотя создавать новые ЭВМ становилось невозможным, запретить мыслить ученым никто не мог. Поэтому до сих пор наши российские ученые опережают мировую научную мысль в области теории автоматизации.

Для разработки программ для ЭВМ создавались различные языки программирования (алгоритмические языки). Фортран FORTRAN – FORmula TRANslated – первый язык, создан в 1956 году Дж. Бэкусом. В 1961 году появился Бейсик BASIC (Beginners All-purpose Simbolic Instartion Code –многоцелевой язык символических инструкций для начинающих) Т.Куртц, дж. Кемени.В 1971 году профессор Цюрихского университета Николас Вирт создал язык Паскаль Pascal, который назвал в честь ученого Блеза Паскаля. Создавались и другие языки: Ада, Алгол, Кобол, Си, Пролог, Фред, Лого, Лисп и др. Но до сих пор самым популярным языком программирования является Паскаль, многие более поздние языки взяли из Паскаля основные команды и принципы построения программы, например язык Си, Си+ и система программирования Delphi, даже Бейсик, изменившись позаимствовал из Паскаля его структурированность и универсальность. Мы с вами в 11-ом классе будем изучать язык Паскаль и научимся создавать программы для решения задач с формулами, для обработки текста, научимся рисовать и создавать движущиеся рисунки.

Суперкомпьютеры

5. Будущее компьютеров

6. Закрепление новых знаний

Закрепление нового материала возможно с помощью теста в мультимедийной презентации к уроку: раздел «Проверь себя» в каждой части презентации: «Предыстория компьютеров», «Поколения ЭВМ», «Галерея учёных».

Проверка знаний по данной теме возможно с помощью тестов «История вычислительной техники» (Приложение 1 ) в 4-х вариантах и тест об учёных «Информатика в лицах» (Приложение 2 )

7. Подведение итогов урока

Проверка заполненных таблиц (Приложение 3 )

8. Домашнее задание

  • лекция в тетради по презентации, таблицы «Предыстория компьютеров», «Поколения ЭВМ»
  • подготовить сообщение про 5-ое поколение ЭВМ (будущее компьютеров)