Развитие эвм. Лекция по информатике «Этапы развития вычислительной техники

30.12.2018

План:

    Этапы развития технических средств и информационных ресурсов:

    1. домеханический этап;

      механический этап;

      электронно-вычислительный этап.

    Поколения ЭВМ.

1. Этапы развития технических средств и информационных ресурсов.

Всю историю вычислительной техники принято делить на три основных этапа:

    домеханический,

    механический,

    электронно-вычислительный.

Заполните таблицу по ходу объяснения нового материала:

Устройство для счета

Дата изобретения

(или годы использования)

Место

изобретения

Изобретатель

период

Домеханический период

Рис. 1 Китайский счет

Первым инструментом для счета были пальцы рук . Все арифметические операции выполнялись при помощи десяти пальцев рук. В Западной Европе существовала целая система позволяющая представлять на пальцах числа до 9999.

Пример, китайский счет на пальцах от 1 до 10 (рис.1)

Счет на пальцах, конечно, удобен, только с ним достаточно тяжело хранить информацию.

Рис. 2 Кости с зарубками

и узелки на веревках

С возникновением у древних людей способности счета появилась необходимость в использовании приспособлений, которые смогли бы облегчить эту работу. Одно из таких орудий труда наших предков было обнаружено при раскопках поселения Дольни Вестоници на юго-востоке Чехии в Моравии. Обыкновенная кость с зарубками (рис.2), получившая название “вестоницкая кость”, использовалась ими для ведения счета предположительно за 30 тыс. лет до н. э.

Примерно к VIII веку до н. э. древними индейскими цивилизациями был придуман другой способ для записи чисел. Для этих целей они использовали узелковое письмо (рис.2), в котором знаками служили камни и разноцветные ракушки, сплетенные вместе веревками.

Развитие государств Европы и Азии, а также усиление торговых отношений между ними привело к созданию совершенно нового инструмента, известного практически у всех народов. Впервые его начали применять в Вавилоне, а вскоре новое изобретение попало в Грецию, где получило свое дальнейшее развитие. Это приспособление представляло собой деревянную дощечку с бороздками (желобками), посыпанную морским песком. Размещенные в этих бороздках камешки обозначали цифры. При этом количество камешков в первой бороздке соответствовало единицам, во второй - десяткам, в третьей - сотням и т. д. Если в одной из бороздок набиралось десять камешков, то их снимали и добавляли один камешек в следующую бороздку.

Ученые назвали этот способ записи чисел единичной ("палочной") системой счисления. В ней для записи чисел применялся только один вид знаков – "палочка". В наше время счётные палочки используются для обучения первоклассников.

Немного позже вместо деревянных дощечек стали использовать каменные плиты с выточенными в них желобками.

Рис. 3 Абак

В Древнем Риме в V в н. э. появилась «счетная доска» и называлась она calculi или abakuli. Для изготовления римского абака (рис.3), помимо каменных плит, стали использовать бронзу, слоновую кость и даже цветное стекло. В вертикальных желобках, разделенных на два поля, также помещались камешки или мраморные шарики, при этом желобки нижнего поля служили для счета от единицы до пяти. Если в этом желобке набиралось пять шариков, то в верхнее отделение добавлялся один шарик, а из нижнего поля все шарики снимали.

Рис. 5 Соробан

Рис. 4 Суан-пан

(рис.4) - китайская разновидность абака - появилась в VI веке н. э. Также как и римский абак, суан-пан разделен на два поля, имеющих свои названия. Большее поле называется “Земля”, а меньшее - “Небо”. В большем поле на каждой веревке нанизано по пять шариков, а в меньшем всего по два. При подсчете шарики уже не снимаются с поля, они лишь передвигаются в сторону соседнего поля. Каждый шарик большего поля соответствует единице, а каждый шарик меньшего поля - пяти.

Рис.6 Счеты

Японской разновидностью абака является соробан (рис.5).

В 1658 году впервые упоминается слово “счеты” (рис. 6). А в начале XVIII века счеты приняли свой привычный вид. В них осталось лишь одно счетное поле, на спицах которого размещалось по десять косточек.

Механический период

Первые идеи механизации вычислительного процесса появились в конце 15 века. Эскиз суммирующего устройства был разработан не безызвестным Леонардо да Винчи.

Рис. 7 Первая механическая счетная машина

(«паскалина»)

1642 год, французский физик Блез Паскаль создал первую механическую счетную машину (рис.7). Она представляла собой шкатулку, на крышке которой, как на часах, были расположены циферблаты. На них устанавливали числа. Для цифр разных разрядов были отведены различные зубчатые колеса. Каждое предыдущее колесо соединялось с последующим с помощью одного зубца. Этот зубец вступал в сцепление с очередным колесом только после того, как были пройдены все девять цифр данного разряда.

Рис. 8 «Счетное

колесо» Лейбница

1671 год, немецкий математик и философ Готфрид Вильгельм Лейбниц сконструировал свою счетную машину, известную как «счетное колесо» Лейбница (рис.8), позволяющую не только складывать и вычитать, но также умножать многозначные числа. Вместо колец использовались цилиндры, на которые были нанесены цифры. Каждый цилиндр имел девять рядов выступов: один выступ на первом ряду, два на втором и так далее. Эти цилиндры были подвижны и устанавливались в определенном положении. Такой механизм позволил ускорить повторяющиеся операции сложения, необходимые для умножения. Само повторение тоже осуществлялось автоматически.

Рис.9 Аналитическая машина

1830 год, английский математик Чарльз Бэббидж попытался построить универсальное вычислительное устройство, т.е. компьютер. Бэббидж называл его аналитической машиной (рис.9). Именно Бэббидж додумался до того, что компьютер должен содержать память и управляться с помощью программы. Бэббидж хотел построить свой компьютер как механическое устройство, а программой собирался управлять посредством перфокарт – карт из плотной бумаги с информацией, наносимой с помощью отверстий (в то время они активно использовались на ткацких станках).

Дочь лорда Байрона, великого английского поэта, Аду Августу Лавлейс (рис.10) чрезвычайно заинтересовала аналитическая машина, изобретенная Бэббиджем. Она перевела и прокомментировала замечания о его машине, написала несколько программ для нее, разработала начала теории программирования. Лишь благодаря ей, мы знаем все подробности о труде Бэббиджа, который сам не удосужился описать свое детище, ограничившись подробными чертежами.

Рис. 10 Ада

Августа Лавлейс

Таким образом, Ада стала первой в истории программисткой. Не удивительно, что один из современных языков программирования носит ее имя ADA .

Рис.12 Табулятор

Рис. 11. Перфокарта

Первым кому удалось реализовать идеею Чарльза Бэббиджа использования перфокарт (рис.11) для программирования, был Герман Холлерит, разработавший машину ля обработки результатов переписи населения. Впервые использовалась в 1890 году и сократила период обработки результатов с восьми лет до трех. Американский инженер Г. Холлерит сконструировал электромеханическое вычислительное устройство – табулятор (рис.12). Табулятор в несколько раз превосходил арифмометр по скорости вычислений, имел память на перфокартах – картонных картах, на которых пробивались (перфорировались) специальные отверстия. Определенная система отверстий изображала число. Табуляторы нашли широкое применение и были предшественниками вычислительных машин нашего времени, они использовались для учета, статистических разработок, планово-экономических и частично инженерно-технических и других расчетов в различных областях народного хозяйства СССР.

Электронно-вычислительный этап

1941 год, немецкий инженер Конрад Цузе построил небольшой компьютер на основе электромеханического реле. Но из-за войны его работы не были опубликованы.

1943 год, в США на одном из предприятий фирмы IBM Говард Эйкен создал более мощный компьютер под названием «Марк-1», который реально использовался для военных расчетов. В нем использовалось сочетание электрических сигналов и механических приводов. Программа обработки данных вводилась с перфоленты. Размеры: 15 Х 2,5 м., 750000 деталей. “Марк-1” мог перемножить два 23-х разрядных числа за 4 с.

Первая ЭВМ «ЭНИАК» (цифровой интегратор и вычислитель) была создана в США после второй мировой войны в 1946 году.

2.Поколения ЭВМ.

Всю электронно-вычислительную технику принято делить на поколения. Смена поколений зависит от элементной базы ЭВМ, т.е. технической основы. От элементной базы зависит мощность ЭВМ, что в свою очередь приводит к изменениям в архитектуре ЭВМ, расширению круга ее задач, к изменению способа взаимодействия пользователя и компьютера.

Характеристика

Значения

I поколение

Годы

1949-1958 гг.

Элементная база

Электронно-вакуумные лампы

Размер (габариты)

Громоздкое сооружение, занимающее сотни квадратных метров, потреблявшее сотни киловатт электроэнергии и содержащие в себе тысячи ламп

Максимальное

быстродействие

компьютера

20 тысяч операций в секунду

Максимальный

объем ОЗУ

Несколько тысяч и команд программы

Периферийные

устройства

Перфоленты и перфокарты

Программное

обеспечение

Программы составлялись на языке машинных команд, поэтому программирование было доступно не всем. Существовали библиотеки стандартных программ.

Области применения

Инженерные и научные расчеты, не связанные с переработкой больших объемов данных.

Примеры

Mark 1, ENIAC, БЭСМ, Урал

II поколение

Годы

1959-1963 гг.

Элементная база

Транзисторы

Размер (габариты)

ЭВМ стали компактнее, надежнее, менее энергоемкими

Максимальное

быстродействие

компьютера

Десятки и сотни тысяч операций в секунду

Максимальный

объем ОЗУ

Увеличился в сотни раз

Периферийные

устройства

Внешняя память на магнитных барабанах и лентах

Программное

обеспечение

Стали развиваться языки программирования высокого уровня ФОРТРАН, АЛГОЛ, КОБОЛ. Программы стали проще, понятнее, доступнее и программирование стало широко распространяться среди людей с высшим образованием

Области применения

Создание информационно – справочных и информационных систем

Примеры

М-220, Мир,БЭСМ-4,Урал-11, IBM -7094

III поколение

Годы

1964-1976 гг.

Элементная база

Интегральные схемы

Размер (габариты)

ЭВМ делятся на большие, средние, мини и микро

Максимальное

быстродействие

компьютера

До 30 миллионов операций в секунду. При проектировании процессора стали использовать технику микропрограммирования – конструирование сложных команд процессора из простых

Максимальный

объем ОЗУ

До 16 Мбайт. Появляется ПЗУ

Периферийные

устройства

Внешняя память на магнитных дисках, дисплеи, графопостроители

Программное

обеспечение

Появились операционные системы и множество прикладных программ. Новые алгоритмические языки высокого уровня. Многопрограммный режим работы - возможность выполнять несколько программ одновременно

Области применения

Базы данных, первые системы искусственного интеллекта, системы автоматизированного проектирования и управления

Примеры

PDP -11, IBM /360, CDC 6600, БЭСМ-6, Минск-32

IV поколение

Годы

1977-наши дни

Элементная база

БИС и СБИС

Размер (габариты)

Микро ЭВМ – малые габариты, сравнимые с размерами бытовых телевизоров; супер компьютеры, состоящие из отдельных блоков и центральный процессор которых занимает отдельное помещение

Максимальное

быстродействие

компьютера

2,5 МГц у первых моделей и до 109 операций в секунду

Максимальный

объем ОЗУ

От 16 Мбайт и более 107 Кбайт

Периферийные

устройства

Цветной графический дисплей, манипуляторы типа «мышь», «джойстик», клавиатура, магнитные и оптические диски, принтеры, сканеры и т.д.

Программное

обеспечение

Пакеты прикладного программного обеспечения, сетевое ПО, мультимедиа и т.д.

Области применения

Все сферы научной, производственной, учебной деятельности, отдых и развлечение, Интернет

Примеры

IBM PC, Macintosh, Cray, ЭЛЬБРУС

V поколение

Годы

Элементная база

Оптоэлектроника, криоэлектрика

Размер (габариты)

Возможно карманные и меньше

Максимальное

быстродействие

компьютера

1012 операций в секунду

Максимальный

объем ОЗУ

108 Кбайт

Периферийные

устройства

Программное

обеспечение

Интеллектуальные программные системы

Области применения

В творческой деятельности человека, искусственный интеллект

Примеры

ЭВМ пятого поколения - это машины недалекого будущего. Основным их качеством быть высокий интеллектуальный уровень. Карманный компьютер сможет проинформировать владельца о последних новостях, позвонить, заказать билеты, уплатить налоги и т.д.

Вопросы для контроля:

    Сколько этапов развития технических средств и информационных ресурсов существует?

    К какому поколению ЭВМ относится карманный компьютер?

Домашнее задание : прочитать записи в тетради, ответить на вопросы индивидуальных карт (упражнение 3), ответить на вопрос «Зачем нужно переходить к цифровому хранению информации?»

I «Абак и счеты»

    Как переводится с греческого языка слово «абак»?

    Где использовали абак в Древней Греции и Риме?

    В какой системе счисления велся счет с помощью устройства абак?

    Какие арифметические операции могли выполнять с помощью абака?

    Как назывался абак в Древнем Риме?

    В каком году появились русские счеты?

II «Блез Паскаль»

    Где и когда родился Блез Паскаль?

    Кем был Б.Паскаль (профессия, род занятий)?

    Каким образом осуществлялось сложение чисел в машине Паскаля?

    Как связано его имя с информатикой?

    Кем была написана первая программа для аналитической машины Ч. Беббиджа?

III «Готфрид Вильгельм Лейбниц».

    Где и когда родился Лейбниц?

    В развитие, каких наук внес свой вклад Лейбниц.

    Какое устройство было изобретено Лейбницем?

    Какие арифметические операции мог выполнять арифмометр?

IV « Чарльз Беббидж ».

    Где и когда родился Чарльз Беббидж?

    Кем по профессии был Ч.Беббидж?

    В каком году у Чарльза Беббиджа возникла мысль о создании аналитической машины?

    Какова была идея аналитической машины?

    Была ли простроена аналитическая машина? Если да, то когда и кем?

V « Герман Холлерит ».

    Где и когда родился Герман Холлерит?

    Какое устройство было изобретено Г. Холлеритом? В каком году?

    Для чего в США в 1890 году был использован табулятор?

    Сколько времени заняло это событие, и сколько долларов было сэкономлено?

    Что представляет собой перфокарта и где они применялись?

Основные этапы развития вычислительной техники.

1. Ручной период автоматизации вычислений начался на заре человеческой цивилизации. Он базировался н использовании пальцев рук и ног. Счет с помощью группировки и перекладывания предметов явился предшественником счета на абаке – наиболее развитом счетном приборе древности. Аналогом абака на Руси являются счеты. В начале 17 века Дж. Непер ввел логарифмы, что оказало революционное влияние на счет. Изобретенная им логарифмическая линейка успешно использовалась еще 15 лет назад, более360 лет прослужив инженерам.

2. Развитие механики в 17 веке стало предпосылкой создания вычислительных устройств и приборов, использующих механический способ вычислений. 1623г.- немецкий ученый В. Шиккард описывает и реализует в единственном экземпляре механическую счетную машину, предназначенную для выполнения 4-х арифметических операций над шестиразрядными числами. 1642г.-Б.Паскаль строит восьмиразрядную действующую модель счетной суммирующей машины. Было создано еще 50 таких машин. 1673г.-немецкий математик Г. Лейбниц создает первый арифмометр, позволяющий выполнять 4 арифметических операций. 1881г. – организация серийного производства арифмометров. Они использовались вплоть до 60-х годов 20 века. 1822г. 1 проект английского математика Ч. Беббиджа – разностная машина – 16-ти разрядный калькулятор, способный печатать цифровые таблицы. Эта машина имела арифметическое устройство, устройство управления, ввода и печати. работала на паровом двигателе и заносила результаты на металлическую пластину. 2 проект Беббиджа- аналитическая машина, использовавшая принцип программного управления и предназначавшаяся для вычисления любого алгоритма не был реализован, но получил широкую известность и высокую оценку ученых. Аналитическая машина состояла из 4-х основных частей: блок хранения исходных, промежуточных и результирующих данных (склад-память), блок обработки данных (мельница-арифметическое устройство), блок управления последовательностью вычислений (устройство управления), блок ввода исходных данных и печати результатов (устройство ввода-вывода). Вместе с Беббиджем работала Ада Лавлейс – первая программистка – писала первые программы для машины, заложила многие идеи и ввела ряд понятий и терминов, сохранившихся до настоящего времени.

3. Электромеханический этап развития вычислительной техники. 1887г. – создание Г. Холлеритом в США первого счетно-аналитического комплекса. Его использовали для обработки результатов переписи населения в нескольких странах, в том числе и в России. 30-е годы – разработка счетно-аналитических комплексов, которые состоят из 4-х основных устройств: перфоратор, контрольник, сортировщик и табулятор. В это же время развиваются аналоговые машины. 1930г. – В. Буш разрабатывает дифференциальный анализатор, использованный в дальнейшем в военных целях. 1937г. – Дж. Атанасов и К. Бери создают электронную машину АВС. 1944г. – Г. Айкен создает управляемую вычислительную машину МАРК-1. 1957г. – последний крупнейший проект релейной вычислительной техники – в СССР создана РВМ-1, которая эксплуатировалась до 1965г.

4. Электронный этап (создание ЭВМ) начинается с созданием в 1945г. в США электронной вычислительной машины ENIAK. В истории развития ЭВМ 5 поколений, которые отличаются в элементарной базе, логической архитектуре и программном обеспечении, различаются по быстродействию, оперативной памяти, способам ввода и вывода информации.

Устройство ЭВМ.

Внешнее устройство.

Базовая конфигурация ПК - минимальный комплект аппаратных средств, достаточный для начала работы с компьютером. В настоящее время для настольных ПК базовой считается конфигурация, в которую входит четыре устройства: Системный блок; Монитор;
Клавиатура; Мышь.

Системный блок – основной блок компьютерной системы. В нем располагаются устройства, считающиеся внутренними. Устройства, подключающиеся к системному блоку снаружи, считаются внешними. В системный блок входит процессор, оперативная память, накопители на жестких и гибких магнитных дисках, на оптический дисках, блок питания и некоторые другие устройства. На лицевой панели кнопка Power – включения и кнопка Reset – перезагрузка компьютера. Несколько световых индикаторов – включения и обращения к жесткому диску. Два дисковода – для компакт-дисков и дискет.

Монитор – устройство для визуального воспроизведения символьной и графической информации. В настольных компьютерах обычно используются мониторы на электронно-лучевой трубке (ЭЛТ). Качество изображения тем выше, чем меньше размер точки изображения (точки люминофора). Однако монитор является также источником высокого статического электрического потенциала, электромагнитного и рентгеновского излучений, которые могут оказывать неблагоприятное воздействие на здоровье человека. Современные мониторы практически безопасны, так как соответствуют жестким санитарно-гигиеническим требованиям, зафиксированным в международном стандарте безопасности ТСО"99. Мониторы на жидких кристаллах (ЖК). LCD (Liquid Crystal Display, жидкокристаллические мониторы) сделаны из вещества, которое находится в жидком состоянии, но при этом обладает некоторыми свойствами, присущими кристаллическим телам. Преимущество ЖК-мониторов перед мониторами на ЭЛТ состоит в отсутствии вредных для человека электромагнитных излучений и компактности. Но ЖК-мониторы обладают и недостатками. Наиболее важные из них – это плохая цветопередача и смазывание быстро движущейся картинки. Мониторы могут иметь различный размер экрана. Размер диагонали экрана измеряется в дюймах (1 дюйм =2,54 см) и обычно составляет 15, 17, 19 и более дюймов.

Клавиатура – клавишное устройство, предназначенное для управления работой компьютера и ввода в него информации. Стандартная клавиатура имеет 104 клавиши и 3 информирующих о режимах работы световых индикатора в правом верхнем углу.

Мышь – устройство «графического» управления. При перемещении мыши по коврику на экране перемещается указатель мыши, при помощи которого можно указывать на объекты и/или выбирать их. Используя клавиши мыши (их может быть две или три) можно задать тот или другой тип операции с объектом. А с помощью колесика можно прокручивать вверх или вниз не умещающиеся целиком на экране изображения, текст или web-страницы. В оптико-механических мышах основным рабочим органом является массивный шар (металлический, покрытый резиной). При перемещении мыши по поверхности он вращается, вращение передается двум валам, положение которых считывается инфракрасными оптопарами (т.е. парами «светоизлучатель-фотоприемник») и затем преобразующийся в электрический сигнал, управляющий движением указателя мыши на экране монитора. Главным «врагом» такой мыши является загрязнение. В настоящее время широкое распространение получили оптические мыши, в которых нет механических частей. Источник света размещенный внутри мыши, освещает поверхность, а отраженны свет фиксируется фотоприемником и преобразуется в перемещение курсора на экране. Современные модели мышей могут быть беспроводными, т.е. подключающимися к компьютеру без помощи кабеля.
Периферийными называют устройства, подключаемые к компьютеру извне. Принтер; Сканер; Модем; DVB-карта и спутниковая антенна; Web-камера.

Принтер служит для вывода информации на бумажный носитель (бумагу). Существуют три типа принтеров: матричный струйный лазерный.

Матричные принтеры - это принтеры ударного действия. Печатающая головка матричного принтера состоит из вертикального столбца маленьких стержней (обычно 9 или 24), которые под воздействием магнитного поля «выталкиваются» из головки и ударяют по бумаге (через красящую ленту). Перемещаясь, печатающая головка оставляет на бумаге строку символов. Недостатки матричных принтеров состоят в том, что они печатают медленно, производят много шума и качество печати оставляет желать лучшего (соответствует примерно качеству пишущей машинки).

Черно-белые и цветные струйные принтеры. В них используется чернильная печатающая головка, которая под давлением выбрасывает чернила из ряда мельчайших отверстий (сопла) на бумагу. Перемещаясь вдоль бумаги, печатающая головка оставляет строку символов или полоску изображения. Струйные принтеры могут печатать достаточно быстро (до нескольких страниц в минуту) и производят мало шума. Качество печати (в том числе и цветной) определяется разрешающей способностью струйных принтеров, которая может достигать фотографического качества 2400 dpi. Это означает, что полоска изображения по горизонтали длиной в 1 дюйм формируется из 2400 точек (чернильных капель).

Лазерные принтеры обеспечивают практически бесшумную печать. Высокую скорость печати (до 30 страниц в минуту) лазерные принтеры достигают за счет постраничной печати, при которой страница печатается сразу целиком. Высокое типографское качество печати лазерных принтеров обеспечивается за счет высокой разрешающей способности, которая может достигать 1200 dpi и более.

Плоттер. Для вывода сложных и широкоформатных графических объектов (плакатов, чертежей, электрических и электронных схем и пр.) используются специальные устройства вывода - плоттеры. Принцип действия плоттера такой же, как и струйного принтера.

Сканеры служат для автоматического ввода текстов и графики в компьютер. Сканеры бывают двух типов: ручные планшетные.

Ручной сканер для компьютера похож на сканер, используемый в супермаркетах для считывания штрих-кода. Такой сканер перемещается по листу с информацией построчно вручную, и информация заносится в компьютер для дальнейшего редактирования. Планшетный сканер выглядит и работает примерно так же, как и ксерокс - приподнимается крышка, текст или рисунок помещается на рабочее поле, и информация считывается. Планшетные сканеры в наше время обычно все цветные. Системы распознавания текстовой информации позволяют преобразовать отсканированный текст из графического формата в текстовый. Разрешающая способность сканеров составляет 600 dpi и выше.

Модем или модемная плата служит для связи удалённых компьютеров по телефонной сети. Модем бывает внутренний (установлен внутри системного блока) и внешний (располагается рядом с системным блоком и соединяется с ним при помощи кабеля.

Для организации на бескрайних Интернета видеоконференций (или просто болтовни) пригодится Веб-камера. С помощью этих устройств (и, естественно, быстрых локальных сетей), можно в любой момент устроить совещание со своими сотрудниками, не отрывая оных от насиженных рабочих мест. А это, как показывает практика, дает весьма ощутимую практическую пользу.

Чаще всего периферийные устройства делят на группы: устройства ввода, вывода и ввода-вывода. Устройства ввода: клавиатура, мышь, сканер. Устройства вывода: принтер, монитор, плоттер. Устройства ввода-вывода: модем.

Внутренними считаются устройства, располагающиеся в системном блоке. Доступ к некоторым из них имеется на лицевой панели, что удобно для быстрой смены информационных носителей. Разъемы некоторых устройств выведены на заднюю стенку – они служат для подключения периферийного оборудования. К некоторым устройствам системного блока доступ не предусмотрен – для обычной работы он не требуется.

Материнская плата – самая большая плата ПК. На ней располагаются магистрали, связывающие процессор с оперативной памятью, - так называемые шины. К шинам материнской платы подключаются также все прочие внутренние устройства компьютера с помощью слотов (разъемов). Управляет работой материнской платы микропроцессорный набор микросхем – так называемый чипсет.

Процессор. Микропроцессор – основная микросхема ПК. Все вычисления выполняются в ней. Процессор аппаратно реализуется на большой интегральной схеме (БИС). Большая интегральная схема на самом деле не является большой по размеру и представляет собой, наоборот, маленькую плоскую полупроводниковую пластину размером примерно 20х20 мм, заключенную в плоский корпус с рядами металлических штырьков (контактов). БИС является большой по количеству элементов. Использование современных высоких технологий позволяет разместить на БИС процессора огромное количество функциональных элементов, размеры которых составляют всего около 0.13 микрон (1 микрон = 10-6 м). Например, в процессоре Pentium 4 их около 42 миллионов.

Характеристика

Число транзисторов

Тактовая частота

1.4 ГГц и выше

Основная характеристика процессора – тактовая частота (количество операций в секунду)(измеряется в мегагерцах (МГц) и гигагерцах (ГГц)). Чем выше тактовая частота, тем выше производительность компьютера. Так, например, при тактовой частоте 2000 МГц процессор может за одну секунду изменить свое состояние 2000 миллионов раз. Для большинства операций одного такта недостаточно, поэтому количество операций, которые процессор может выполнить в секунду, зависит не только от тактовой частоты, но и от сложности операций. Другая характеристика- разрядность. Производительность выше, чем выше разрядность. Существуют процессоры 8, 16, 32, 64 и тд-разрядные.

Есть еще несколько важных характеристик процессора – тип ядра и технология производства, частота системной шины. Единственное устройство, о существовании которого процессор «знает от рождения» – оперативная память – с нею он работает совместно. Данные копируются в ячейки процессора (регистры), а затем преобразуются в соответствии с командами (программой).

Оперативная память (ОЗУ или RAM), предназначена для хранения информации, изготавливается в виде модулей памяти. Оперативную память можно представить как обширный массив ячеек, в которых хранятся данные и команды в то время, когда компьютер включен. Процессор может обратится к любой ячейки памяти. Важнейшей характеристикой модулей памяти является быстродействие. Модули памяти могут различаться между собой по размеру и количеству контактов, быстродействию, информационной емкостью и т.д.
Может возникнуть вопрос - почему бы не использовать для хранения промежуточных данных жесткий диск, ведь его объем во много раз больше? Это делать нельзя, так как скорость доступа к оперативной памяти у процессора в сотни тысяч раз больше, чем к дисковой. Для длительного хранения данных и программ широко применяются жесткие диски (винчестеры). Выключение питания компьютера не приводит к очистке внешней памяти. К оперативной памяти относят также кэш- память, которая хранит промежуточные данные работы процессора, что увеличивает его производительность.

Постоянная память(ROM), которая хранит информацию постоянно (носит название BIOS , хранит информацию о конфигурации системы, программу начальной загрузки, тестирования и запуска ЭВМ).

Видеоадаптер – внутренне устройство, устанавливается в один из разъемов материнской платы, и служит для обработки информации, поступающей от процессора или из ОЗУ на монитор, а также для выработки управляющих сигналов. В первых персональных компьютерах видеоадаптеров не было. Вместо них в оперативной памяти отводилась небольшая область для хранения видеоданных. Специальная микросхема (видеоконтроллер) считывала данные из ячеек видеопамяти и в соответствии с ними управляла монитором. По мере улучшения графических возможностей компьютеров область видеопамяти отделили от основной оперативной памяти и вместе с видеоконтроллером выделили в отдельный прибор, который назвали видеоадаптером. Современные видеоадаптеры имеют собственный вычислительный процессор (видеопроцессор), который снизил нагрузку на основной процессор при построении сложных изображений. Особенно большую роль видеопроцессор играет при построении на плоском экране трехмерных изображений. В ходе таких операций ему приходится выполнять особенно много математических расчетов.
В некоторых моделях материнских плат функции видеоадаптера выполняют микросхемы чипсета - в этом случае говорят, что видеоадаптер интегрирован с материнской платой. Если же видеоадаптер выполнен в виде отдельного устройства, его называют видеокартой. Разъем видеокарты выведен на заднюю стенку. К нему подключается монитор.

Звуковой адаптер. Для компьютеров IBM PC работа со звуком изначально не была предусмотрена. Первые десять лет существования компьютеры этой платформы считались офисной техникой и обходились без звуковых устройств. В настоящее время средства для работы со звуком считаются стандартными. Для этого на материнской плате устанавливается звуковой адаптер. Он может быть интегрирован в чипсете материнской платы или выполнен как отдельная подключаемая плата, которая называется звуковой картой.
Разъемы звуковой карты выведены на заднюю стенку компьютера. Для воспроизведения звука к ним подключают звуковые колонки или наушники. Отдельный разъем предназначен для подключения микрофона. При наличии специальной программы это позволяет записывать звук. Имеется также разъем (линейный выход) для подключения к внешней звукозаписывающей или звуковоспроизводящей аппаратуре (магнитофонам, усилителям и т.п.).

От древности до наших дней Основными этапами развития вычислительной техники являются: Ручной - до 17 века... , несомненно, является венцом вычислительных инструментов ручного периода автоматизации. Развитие механики в XVII веке...

  • 1. Основные этапы развития психологии как науки. Развитие представлений о предмете психологии

    Документ

    Лишь полностью формализовавшиеся процессы, Развитие электронной вычислительной техники сделало очевид­ной связь между... взрослым в процессе познавательной деятельности. Выделяют 5 основных этапов развития речи у ребенка: 1) предречевой (дословесный) – ...

  • Аннотация к рабочей программе дисциплины «Математическая логика и теория алгоритмов» по направлению 230100. 62 Информатика и вычислительная техника

    Документ

    История развития средств вычислительной техники . Методы классификации компьютеров. Состав вычислительной системы Общее... гуманитарных наук; - познакомить студентов с основными этапами развития Отечественной и Всемирной истории и важнейшими событиями...

  • Приказ № от «31»августа 2010г. Рабочая учебная программа курса информатики и вт для общеобразовательных учреждений Основная школа- 2 года Базовый уровень

    Рабочая учебная программа
  • Электронные вычислительные машины (ЭВМ) получили широкое распространение еще в середине 20 века. Начало их создания пришлось на 1940-е годы с появлением электромеханических счетных машин. В 40-60-х годах производство ЭВМ измерялось единицами, десятками и, в лучшем случае, сотнями штук. ЭВМ были очень дорогими и очень большими (занимали громадные залы), поэтому оставались недоступными для массового потребителя и использовались лишь в государственных учреждениях и крупных фирмах.

    1945-1955 гг. это период становления , к нему относится появление первых электронных вычислительных машин, которые могли автоматически по заданной программе обрабатывать большие объемы информации, причем почти одновременно в трех странах: США (1945, ЭНИАК), Англии (1949, EDSAC) и СССР (1950, МЭСМ).

    В июне 1943 года артиллерийское управление заключило договор с Пенсильванским университетом на постройку "Электронной машины для расчета баллистических таблиц" - "Электронно-цифрового интегратора и вычислителя" (Electronical Numerical Integrator and Calculator, сокращенно ENIAC). Предназначавшийся для военных целей ENIAC был закончен через 2 месяца после капитуляции Японии (рис. 1.12).

    Это было огромное сооружение: более 30 м в длину и площадью более 85 м 3 , весом 30 т, состоящее из 40 панелей, расположенных П-образно и содержащих более 18000 электронных ламп и 1500 реле. Машина потребляла около 150 кВт энергии.

    В 1949 году в Кембриджском университете (Великобритания) группой во главе с Морисом Уилксом была создана электронная вычислительная машина (рис. 1.13)

    EDSAC (англ. Electronic Delay Storage Automatic Computer ), первый в мире действующая и практически используемая с хранимой в памяти программой.

    Ее архитектура наследовала архитектуру EDVAC. На создание EDSAC ушло два с половиной года. Весной 1949 года была завершена отладка машины, и 6 мая 1949 года была выполнена первая программа - вычисление таблицы квадратов чисел от 0 до 99. Она состояла примерно из 3000 электронных ламп. Основная память состояла из 32 ртутных ультразвуковых линий задержки (РУЛЗ), каждая из которых хранила 32 слова по 17 бит, включая бит знака - всего это даёт 1024 ячеек памяти. Была возможность включить дополнительные линии задержки, что позволяло работать со словами в 35 двоичных разрядов (включая бит знака). Вычисления производились в двоичной системе со скоростью от 100 до 15 000 операций в секунду. Потребляемая мощность - 12 кВт, занимаемая площадь - 20 м². В 1953 году в той же лаборатории под руководством Уилкса и Ренвика началась работа над второй моделью ЭВМ ставшей предшественнице современных компьютеров.

    В качестве оперативного запоминающего устройства уже использовались элементы

    на ферритовых сердечниках, общей ёмкостью в 1024 слова. Кроме того, в новой машине появилось и постоянное запоминающее устройство (ПЗУ) - сначала на диодной, а затем на ферритовой матрице. Но главным новшеством было использование микропрограммного управления: некоторые из команд можно было составлять из набора микроопераций; микропрограммы записывались в постоянной памяти. EDSAC-2 была введена в строй в 1957 году и проработала до 1965 года.

    В нашей стране в 1948 году академик Сергей Алексеевич Лебедев предложил проект первой на континенте Европы ЭВМ (рис. 1.14) - называлась она малая электронная счетно-решающая машина (МЭСМ). В 1951 году МЭСМ официально вводится в эксплуатацию в Институте точной механики и вычислительной техники АН СССР, на ней регулярно решаются вычислительные задачи.

    Машина оперировала с 20 разрядными двоичными кодами с быстродействием 50 операций в секунду, имела оперативную память в 100 ячеек на около 6000 электровакуумных лампах (около 3500 триодов и 2500 диодов), занимала площадь 60 м 2 , потребляла мощность около 25 кВт. А в 1952 году академиком С.А. Лебедевым создается серия советских электронных вычислительных машин общего назначения, предназначенных для решения широкого круга задач и первой из них, стала БЭСМ (рис 1.15) (большая (или быстродействующая) электронно-счётная машина) введенная в эксплуатацию осенью 1952 году, известная как БЭСМ Академии Наук (БЭСМ АН). Которая была построена на электронных лампах (5000 ламп). Быстродействие - 8-10 тыс. оп./с. Внешняя память - на магнитных барабанах (2 барабана по 512 слов) и магнитных лентах (4 по 30 000 слов), имела параллельное 39-разрядное АЛУ с плавающей запятой, выполнявшее 20 операций.

    Была создана только одна машина БЭСМ-1 (рис. 1.15), которая стала предшественницей серии отечественных цифровых ЭВМ. В 1953 году на БЭСМ-1 была опробована оперативная память на ртутных трубках БЭСМ-2 (1024 слова), в начале 1955 года - на потенциалоскопах БЭСМ-3 (1024 слова), в 1957 году - на ферритных сердечниках БЭСМ-4 (2047 слов). В 1953 году (октябрь - международная конференция в Дармштадте) БЭСМ признана самой лучшей в Европе.

    Второе поколение (период от конца 50-х до конца 60-х годов). В 1949 году в США был создан первый полупроводниковый прибор, заменяющий электронную лампу. Он получил название транзистор. Транзисторы быстро внедрялись в радиотехнику. В 60-х годах транзисторы стали элементной базой для ЭВМ второго поколения. Соединение элементов: печатные платы и навесной монтаж проводов. Габариты значительно уменьшились. Производительность от сотен тысяч до 1 млн. операций в секунду. Упростилась эксплуатация. Во времена второго поколения активно стали развиваться языки программирования высокого уровня. Первыми из них были ФОРТРАН, АЛГОЛ, КОБОЛ, Составление программы перестало зависеть от модели машины, сделалось проще, понятнее, доступнее. Программирование как элемент грамотности стало широко распространяться, главным образом среди людей с высшим образованием.

    Большое развитие получили устройства внешней (магнитной) памяти: магнитные барабаны, накопители на магнитных лентах. Благодаря этому появилась возможность создавать на ЭВМ информационно-справочные, поисковые системы. Такие системы связаны с необходимостью длительно хранить на магнитных носителях большие объемы информации.

    Третье поколение (период от конца 60-х до конца 70-х годов). Элементная база: интегральные схемы (ИС), которые вставляются в специальные гнезда на печатной плате. Увеличилась производительность от сотен тысяч до миллионов операций в секунду. Более оперативно производится ремонт обычных неисправностей. Увеличились объемы памяти. Первые интегральные схемы содержали в себе десятки, затем – сотни элементов (транзисторов, сопротивлений и др.). Когда степень интеграции (количество элементов) приблизилось к тысяче, их стали называть большими интегральными схемами – БИС; затем появились сверхбольшие интегральные схемы – СБИС.

    ЭВМ третьего поколения начали производиться во второй половине 60-х годов, когда американская фирма IBM приступила к выпуску системы машин IBM-360. Это были машины на ИС. Немного позднее стали выпускаться машины серии IBM-370, построенные на БИС. В нашей стране в 70-х годах начался выпуск машин серии ЕС ЭВМ (Единая система ЭВМ) по образцу IBM 360/370.

    На машинах третьего поколения появился новый тип внешних запоминающих устройств – магнитные диски. Накопители на магнитных дисках (НМД) работают гораздо быстрее, чем накопители на магнитных лентах (НМЛ). Широко используются новые типы устройств ввода-вывода: дисплеи, графопостроители.

    В этот период существенно расширились области применения ЭВМ. Стали создаваться базы данных, первые системы искусственного интеллекта, системы автоматизированного проектирования (САПР) и управления (АСУ).

    В 70-е годы получило мощное развитие линия малых (мини) ЭВМ. Своеобразным эталоном здесь стали машины американской фирмы DEC серии PDP. В нашей стране по этому образцу создавалась серия машин СМ ЭВМ (Система малых ЭВМ). Они меньше, дешевле, надежнее больших машин. Машины этого типа хорошо приспособлены для целей управления различными техническими объектами: производственными установками, лабораторным оборудованием, транспортными средствами. По этой причине их называют управляющими машинами. Во второй половине 70-х годов производство мини-ЭВМ превысило производство больших машин.

    Четвертое поколение (от конца 70-х годов по настоящее время). Очередное революционное событие в электронике произошло в 1971 году, когда американская фирма Intel объявила о создании нового устройства. Размеры и форма цифровых ЭВМ неузнаваемо изменились в результате разработки новых устройств, называемых микропроцессорами.

    Микропроцессор (МП) - это программно-управляемое электронное цифровое устройство, предназначенное для обработки цифровой информации и управления процессом этой обработки, выполненное на одной или нескольких интегральных схемах с высокой степенью интеграции электронных элементов.

    В 1970 году Маршиан Эдвард Хофф из фирмы сконструировал интегральную схему, аналогичную по своим функциям центральному процессору большой ЭВМ - первый микропроцессор, который уже в 1971 году был выпущен в продажу. 15 ноября 1971 г. можно считать началом новой эры в электронике. В этот день компания приступила к поставкам первого в мире микропроцессора.

    Это был настоящий прорыв, ибо микропроцессор размером менее 3 см был производительнее гигантской машины ENIAC. Правда работал он гораздо медленнее и мог обрабатывать одновременно только 4 бита информации (процессоры больших ЭВМ обрабатывали 16 или 32 бита одновременно), но и стоил первый микропроцессор в десятки тысяч раз дешевле.

    Кристалл представлял собой 4-разрядный процессор с классической архитектурой ЭВМ гарвардского типа и изготавливался по передовой p-канальной МОП (Металл - Оксид - полупроводник) технологии с проектными нормами 10 мкм. Электрическая схема прибора насчитывала 2300 транзисторов. МП работал на тактовой частоте 750 кГц при длительности цикла команд 10,8 мкс. Чип i4004 имел адресный стек (счетчик команд и три регистра стека типа LIFO), блок РОНов (регистры общего назначения), (регистровый файл - РФ), 4-разрядное параллельное арифметико-логическое устройство (АЛУ), аккумулятор, регистр команд с дешифратором команд и схемой управления, а также схему связи с внешними устройствами. Все эти функциональные узлы объединялись между собой 4-разрядной ШД. Память команд достигала 4 Кбайт (для сравнения: объем ЗУ мини-ЭВМ в начале 70-х годов редко превышал 16 Кбайт), а РФ ЦП насчитывал 16 4-разрядных регистров, которые можно было использовать и как 8 8-разрядных. Такая организация РОНов сохранена и в последующих МП фирмы Intel. Три регистра стека обеспечивали три уровня вложения подпрограмм. МП i4004 монтировался в пластмассовый или металлокерамический корпус типа DIP (Dual In-line Package) всего с 16 выводами.

    В систему его команд входило всего 46 инструкций. Вместе с тем кристалл располагал весьма ограниченными средствами ввода/вывода, а в системе команд отсутствовали операции логической обработки данных (И, ИЛИ, ИСКЛЮЧАЮЩЕЕ ИЛИ), в связи с чем их приходилось реализовывать с помощью специальных подпрограмм. Модуль i4004 не имел возможности останова (команды HALT) и обработки прерываний.

    Первоначально микропроцессоры стали встраивать в различные технические устройства: станки, автомобили, самолеты. Такие микропроцессоры осуществляют автоматическое управление работой этой техники. С появлением микропроцессоров связано одно из важнейших событий в истории вычислительной техники - создание и применение микро-ЭВМ. Существенное отличие микро-ЭВМ от своих предшественников являются их малые габариты (размеры бытового телевизора) и сравнительная дешевизна. Это первый тип компьютеров, который появился в розничной продаже.

    Цикл команды процессора состоял из 8 тактов задающего генератора. Была мультиплексированная ША (шина адреса)/ШД (шина данных), адрес 12-разрядный передавался по 4-разряда.

    1 апреля 1972 г. фирма Intel начала поставки первого в отрасли 8-разрядного прибора i8008. Кристалл изготавливался по р-канальной МОП-технологии с проектными нормами 10 мкм и содержал 3500 транзисторов. Процессор работал на частоте 500 кГц при длительности машинного цикла 20 мкс (10 периодов задающего генератора). В отличие от своих предшественников микропроцессор имел архитектуру ЭВМ принстонского типа, а в качестве памяти допускал применение комбинации ПЗУ и ОЗУ.

    По сравнению с i4004 число РОН уменьшилось с 16 до 8, причем два регистра использовались для хранения адреса при косвенной адресации памяти (ограничение технологии - блок РОН аналогично кристаллам 4004 и 4040 в микропроцессоре 8008 был реализован в виде динамической памяти). Почти вдвое сократилась длительность машинного цикла (с 8 до 5 состояний). Для синхронизации работы с медленными устройствами был введен сигнал готовности READY.

    Система команд насчитывала 65 инструкций. Микропроцессор мог адресовать память объемом 16 Кбайт. Его производительность по сравнению с четырехразрядными микропроцессорами возросла в 2,3 раза. В среднем для сопряжения процессора с памятью и устройствами ввода/вывода требовалось около 20 схем средней степени интеграции.

    Возможности р-канальной технологии для создания сложных высокопроизводительных микропроцессоров были почти исчерпаны, поэтому "направление главного удара" перенесли на n-канальную МОП технологию.

    1 апреля 1974 микропроцессор Intel 8080 был представлен вниманию всех заинтересованных лиц. Благодаря использованию технологии n-МОП с проектными нормами 6 мкм, на кристалле удалось разместить 6 тыс. транзисторов. Тактовая частота процессора была доведена до 2 Мгц, а длительность цикла команд составила уже 2 мкс. Объем памяти, адресуемой процессором, был увеличен до 64 Кбайт. За счет использования 40-выводного корпуса удалось разделить ША и ШД, общее число микросхем, требовавшихся для построения системы в минимальной конфигурации сократилось до 6 (рис. 1.16).


    Рис. 1.16. Структурная схема микропроцессора Intel 8080

    В Регистровый файл были введены указатель стека, активно используемый при обработке прерываний, а также два программно недоступных регистра для внутренних пересылок. Блок РОНов был реализован на микросхемах статической памяти. Исключение аккумулятора из Регистрового файла и введение его в состав АЛУ упростило схему управления внутренней шиной.

    Новое в архитектуре МП - использование многоуровневой системы прерываний по вектору.

    Такое техническое решение позволило довести общее число источников прерываний до 256 (до появления БИС контроллеров прерываний схема формирования векторов прерываний требовала применения до 10 дополнительных чипов средней интеграции). В i8080 появился механизм прямого доступа в память (ПДП) (как ранее в универсальных ЭВМ IBM System 360 и др.).

    ПДП открыл зеленую улицу для применения в микро-ЭВМ таких сложных устройств, как накопители на магнитных дисках и лентах дисплеи на ЭЛТ, которые и превратили микро-ЭВМ в полноценную вычислительную систему.

    Самой популярной разновидностью ЭВМ сегодня являются персональные компьютеры. Начало широкой продажи персональных ЭВМ связано с именами С. Джобса и В. Возняка, основателей фирмы "Эппл компьютер" (Apple Computer), которая с 1977 года наладила выпуск персональных компьютеров "Apple". С 1982 года фирма IBM приступила к выпуску модели персонального компьютера, ставшего эталоном на долгие времена – IBM PC (Personal Computer). Фирма придерживалась принципа открытой архитектуры и магистрально-модульного построения компьютера (любой изготовитель может установить свои комплектующие к компьютеру).

    Есть и другая линия в развитии ЭВМ четвертого поколения. Это суперЭВМ. Машины этого класса имеют быстродействие сотни миллионов и миллиарды операций в секунду. Первой суперЭВМ четвертого поколения была американская машина ILLIAK-4, за ней появились CRAY, CYBER и др. Из отечественных машин к этой серии относится многопроцессорный вычислительный комплекс ЭЛЬБРУС. Развитие таких вычислительных систем происходит по пути увеличения числа процессоров и их быстродействия. Современные многопроцессорные вычислительные комплексы включают в себя десятки тысяч процессоров. Их быстродействие исчисляется сотнями миллиардов операций в секунду.

    Современные ЭВМ превосходят компьютеры предыдущих поколений компактностью, огромными возможностями и доступностью для разных категорий пользователей. Основные технические характеристики современного персонального компьютера: процессор (быстродействие – тактовая частота, разрядность), оперативная и внешняя память (объем памяти, скорость доступа к памяти и др.), видеопамять, средства ввода-вывода, средства коммуникации и др.

    Очень важно правильно выбрать конфигурацию ЭВМ:

    · тип основного микропроцессора и материнской платы;

    · объем основной и внешней памяти;

    · номенклатуру устройств внешней памяти;

    · виды системного и локального интерфейсов;

    · тип видеоадаптера и видеомонитора;

    · типы клавиатуры, принтера, манипулятора, модема и др.

    Важнейшей характеристикой является производительность машины, основными факторами повышения которой являются:

    · увеличение тактовой частоты;

    · увеличение разрядности микропроцессора;

    · увеличение внутренней частоты микропроцессора;

    · конвейеризация выполнения операций в микропроцессоре и наличие кэш-памяти команд;

    · увеличение количества регистров микропроцессорной памяти;

    · наличие и объем кэш-памяти;

    · возможность организации виртуальной памяти;

    · наличие математического сопроцессора;

    · наличие процессора OverDrive;

    · пропускная способность системной шины и локальной шины;

    · объем ОЗУ и его быстродействие;

    · быстродействие накопителя жестких магнитных дисков;

    · пропускная способность локального дискового интерфейса;

    · организация кэширования дисковой памяти;

    · объем памяти видеоадаптера и его пропускная способность;

    · пропускная способность мультикарты, содержащей адаптеры дисковых интерфейсов и поддерживающей последовательные и параллельный порты для подключения принтера, мыши и др.

    ЭВМ пятого поколения – это машины недалекого будущего. Основным их качеством должен быть высокий интеллектуальный уровень. Машины пятого поколения – это реализованный искусственный интеллект. В них будет возможным ввод с голоса, голосовое общение, машинное "зрение", машинное "осязание". Многое уже практически сделано в этом направлении.

    ЭВМ пятого поколения должны удовлетворять следующим качественно новым функциональным требованиям:

    Обеспечивать простоту применения ЭВМ путем эффективных систем ввода-вывода информации, диалоговой обработки информации с использованием естественных языков, возможности обучаемости, ассоциативных построений и логических выводов (интеллектуализация ЭВМ);

    Упростить процесс создания программных средств путем автоматизации синтеза программ по спецификациям исходных требований на естественных языках; усовершенствовать инструментальные средства разработчиков;

    Улучшить основные характеристики и эксплуатационные качества ЭВМ, обеспечить их разнообразие и высокую адаптируемость к приложениям.

    В настоящее время одним из основных направлений научно-технического прогресса является широкая автоматизация технологических процессов. Использование микропроцессоров и устройств, созданных на их основе, позволяет значительно повысить уровень автоматизации. В качестве примеров можно отметить широкое внедрение робототехники, автоматизированных станков, механизмов и машин, измерительной, регулирующей и управляющей техники, созданной на основе микропроцессоров, вычислительной техники.

    Основные этапы развития вычислительной техники представлены в таблице.

    Рассмотрим основные моменты каждого этапа.

    Более трех тысяч лет назад в Средиземноморье было распространено простейшее приспособление для счета: доска, разделенная на полосы, где перемещались камешки или кости. Такая счетная дощечка называлась абак и использовалась для ручного счета. В Древнем Риме абак назывался calculi или abaculi и изготавливался из бронзы, камня, слоновой кости и цветного стекла. Слово calculus означает «галька», «голыш». От этого слова произошло латинское слово calculatore (вычислять), а затем слово «калькуляция». Абак позволял лишь запоминать результат, а все арифметические действия должен был выполнять человек.

    Первая механическая машина была построена немецким ученым Вильгельмом Шиккардом (предположительно в 1623 г.). Машина была реализована в единственном экземпляре и предназначалась для выполнения арифметических операций. Из-за недостаточной известности машины Шиккарда более 300 лет считалось, что первую суммирующую машину сконструировал Блез Паскаль.

    Блез Паскаль (французский математик, физик, религиозный философ и писатель) в 1642 г. изобрел механическую счетную машину, выполнявшую сложение, а в 1674 г. Готфрид Лейбниц расширил возможности машины Паскаля, добавив операции умножения, деления и извлечения квадратного корня. Специально для своей машины Лейбниц применил систему счисления, использующую вместо привычных для человека десяти цифр две: 1 и 0. Двоичная система счислений широко используется в современных ЭВМ.

    Ни одна из этих машин не была автоматической и требовала непрерывного вмешательства человека. В 1834 г. Чарлз Бэббидж (Charles Babbage) первым разработал подробный проект автоматической вычислительной машины. Он так и не построил свою машину, так как в то время невозможно было достичь требуемой точности изготовления ее узлов.

    Ч. Бэббидж выделял в своей машине следующие составные части:

      «склад» для хранения чисел (по современной терминологии - память);

      «мельницу» для производства арифметических действий (арифметическое устройство, процессор);

      устройство, управляющее последовательностью выполнения операций (устройство управления);

      устройства ввода и вывода данных.

    В качестве источника энергии для приведения в действие механизмов машины Ч. Бэббидж предполагал использовать паровой двигатель.

    Бэббидж предложил управлять своей машиной с помощью перфорированных карт, содержащих коды команд, подобно тому как использовались перфокарты в ткацких станках Жаккара . На этих картах было представлено то, что сегодня мы назвали бы программой.

    Ч. Бэббидж довольно подробно рассматривал вопросы, связанные, как мы сейчас говорим, с программированием. В частности, им была разработана весьма важная для программирования идея «условной передачи управления». Идеи Бэббиджа заложили фундамент, на котором со временем были построены ЭВМ.

    Первые программы для вычислительной машины Бэббиджа создавала Ада Лавлейс (Ada Lovelace) - дочь известного поэта Джорджа Байрона, в честь которой впоследствии был назван один из языков программирования. Выражаясь современным языком, Лавлейс составила программу вычисления чисел Бернулли. Ада Лавлейс разработала основные принципы программирования, которые остаются актуальными до настоящего момента времени. Ряд терминов, введенных Адой Лавлейс, используются и сейчас, например, «цикл», «рабочие ячейки».

    Теоретические основы современных цифровых вычислительных машин заложил английский математик Джордж Буль (1815-1864). Он разработал алгебру логики, ввел в обиход логические операторы И, ИЛИ и НЕ. Заметим, что его дочь Э. Войнич - автор известного произведения «Овод».

    В 1888 г. Германом Холлеритом (Herman Hollerith) была сконструирована первая электромеханическая машина для сортировки и подсчета перфокарт. Эта машина, названная табулятором , содержала реле, счетчики, сортировочный ящик. Изобретение Холлерита было использовано при подведении итогов переписи населения в США.

    Успех вычислительных машин с перфокартами был феноменален. То, чем за десять лет до этого занимались 500 сотрудников в течение семи лет, Холлерит сделал с 43 помощниками на 43 вычислительных машинах за 4 недели.

    В 1896 г. Герман Холлерит основал фирму Computing Tabulation Company. Спустя несколько лет это предприятие переименовали визвестнейшую теперь фирму International Business Machine Corporation (IBM).

    Немецкий инженер Конрад Цузе ( Konrad Zuse) был первым, кто успешно осуществил идею создания автоматической электромеханической вычислительной машины на основе двоичной системы счисления. В 1936 г. он начал конструировать вычислительный аппарат, работающий в двоичной системе счисления, который впоследствии был назван Zuse 1 (Z1).

    В 1941 г. Цузе сумел построить действующую модель Zuse 3, которая состояла из 600 реле счетного устройства и 2000 реле устройства памяти.

    В 1944 г. (по другим источникам, в 1943 г.) в Англии было разработано полностью автоматическое вычислительное устройство Colossus II. Основным его назначением была дешифровка перехваченных сообщений военного противника.

    Еще одна полностью автоматическая вычислительная машина, изобретенная профессором Гарвардского университета Говардом Айкеном ( Aiken Howard, 1900-1973) при участии группы инженеров фирмы IBM, была построена в 1944 г. Она была названа ASCC (другое название Mark 1) , и была электромеханической (построена на реле), состоящей приблизительно из 750 тысяч компонентов. На умножение она тратила около 4 секунд. До знакомства с работами Цузе научная общественность считала машину ASCC первой электромеханической машиной.

    В 1937 г. в США Дж. Атанасов начал работы по созданию электронной вычислительной машины. Им были созданы и запатентованы первые электронные схемы отдельных узлов ЭВМ. Совместно с К. Берри к 1942 г. была построена электронная машина ABC (A tanasoff-B erry C omputer).

    Электронная вычислительная машина, разработанная Эккертом и Маучли (John W. Mauchly and J. Presper Eckert, Jr.) в США в 1946 г., была названа ENIAC . При создании этой машины Эккерт и Маучли заимствовали основные идеи у Дж. Атанасова. ENIAC была примерно в 1000 раз быстрее, чем ASCC. Она состояла из 18 тысяч электронных ламп, 1500 реле, имела вес более 30 тонн, потребляла мощность более 150 кВт.

    Фотография позволяет наглядно оценить прогресс вычислительной техники. Несколько человек находятся внутри ENIAC. Современные ЭВМ уже можно разместить внутри человека.

    Первоначально ENIAC программировалась путем соединения проводами соответствующих гнезд на коммутационной панели, что делало составление программы очень медленным и утомительным занятием. Американский математик и физик венгерского происхождения Джон фон Нейман (1903-1957) предложил хранить программу - последовательность команд управления ЭВМ - в памяти ЭВМ, что позволяло оперировать с программой так же, как с данными. Последующие ЭВМ строились с большим объемом памяти, с учетом того, что там будет храниться программа.

    В докладе фон Неймана, посвященном описанию ЭВМ, выделено пять базовых элементов компьютера:

      арифметико-логическое устройство (АЛУ);

      устройство управления (УУ);

      запоминающее устройство (ЗУ);

      система ввода информации;

      система вывода информации.

    Описанную структуру ЭВМ принято называть архитектурой фон Неймана.

    ЭВМ первого поколения в качестве элементной базы использовали электронные лампы и реле.

    Изобретение в 1948 г. транзисторов и запоминающих устройств на магнитных сердечниках оказало глубокое воздействие на вычислительную технику. Ненадежные вакуумные лампы, которые требовали большой мощности для нагревания катода, заменялись небольшими германиевыми (впоследствии кремниевыми) транзисторами. Компьютеры, построенные в середине 50-х годов ХХ в., стали называть машинами второго поколения .

    Революционный прорыв в миниатюризации и повышении надежности компьютеров произошел в 1958 г., когда американский инженер Д. Килби (Jack Kilby) разработал первую интегральную микросхему. В середине 60-х годов появилось третье поколение ЭВМ, основу элементной базы которых составляли микросхемы малой и средней степени интеграции.

    Другая революция в технологии изготовления ЭВМ произошла в 1971 г., когда американский инженер Маршиан Эдвард Хофф (Marcian E. Hoff) объединил основные элементы компьютера в один небольшой кремниевый чип (кристалл), который он назвал микропроцессором . Первый микропроцессор получил маркировку Intel 4004.

    ЭВМ четвертого поколения строятся на интегральных микросхемах с большой степенью интеграции. На одном кристалле размещается целая микроЭВМ. Заметим, что переход от третьего поколения ЭВМ к четвертому не был революционным. Отличия коснулись не столько принципов построения ЭВМ, сколько плотности упаковки элементов в микросхемах.

    Развитие ЭВМ идет по пути непрерывного повышения быстродействия, надежности, расширения функциональных возможностей, уменьшения габаритов и потребляемой мощности, упрощения правил работы на компьютере. Среди ЭВМ четвертого поколения появились персональные компьютеры (ПК или ПЭВМ), которые позволяют индивидуально работать каждому пользователю.

    Первой ПЭВМ можно считать компьютер Altair-8800, созданный в 1974 г. Э. Робертсом . Для этого компьютера П. Аллен и Б. Гейтс в 1975 г. создали транслятор с популярного языка Basic. Впоследствии П. Аллен и Б. Гейтссоздали известную компанию Microsoft .

    В 1976 г. Стивен П. Джобс и Стефан Г. Возниак основали в гараже Пало-Альто (Калифорния) предприятие Apple Computer. После шести месяцев работы Возниаку удалось собрать действующий макет под названием Apple 1. В настоящее время компания с таким названием хорошо известна многим пользователям ЭВМ.

    В настоящее время ведется разработка ЭВМ пятого поколения , характерными особенностями которых будут способность к самообучению и наличие речевого ввода и вывода информации.

    Таким образом, вычислительная техника постоянно впитывала в себя самые последние достижения науки, техники и технологии (электронные лампы, транзисторы, микроэлектроника, лазеры, средства связи), благодаря чему ее развитие идет необычайно высокими темпами.

    В следующем столетии, когда на смену электронным приборам придут квантовые, оптические или биоэлектронные приборы, то современные нам ЭВМ будут казаться будущим пользователям такими же монстрами, какими нам кажутся вычислительные машины 40-х годов ХХ в.