Формальные, технические, естественные, общественные, гуманитарные, и другие науки

29.01.2019

Cреда передачи - физическая субстанция, по которой происходит передача электрических, электромеханических, оптических, радиосигналов, использующихся для переноса той или иной информации. Среда передачи может быть естественной или искусственной.

Естественные среды

Безвоздушное пространство - позволяет распространяться электромагнитному, световому, рентгеновскому и другим видам излученений.

Воздушное пространство - в основном используется для передачи радиоволн.

Водная поверхность - в ней по большей части распространяются звуковые волны.

Твёрдая поверхность - проводит звуковые и сейсмические волны.

Помимо этого звуковые и сейсмические волны хорошо проводятся другими твёрдыми материалами естественного происхождения - камень, дерево, что используется при создании электромеханических устройств приёма-передачи информации.

Искусственные среды

По большей части искусственные среды для передачи сигналов представлены проводами и кабелями:

оптический кабель - делается из стекла и/или пластика и переносит внутри себя световой сигнал;

кабели, провода с металлическим проводником - железом, медью; примеры: коаксиальный кабель, витая пара и другие;

углеродное волокно и ткани из углеродных волокон - служат для передачи электрических сигналов.

Связь между полосой пропускания линии и ее пропускной способностью вне зависимости

от принятого способа физического кодирования установил Клод Шеннон:

C = Flog2(l+Pc/Pu,).

Здесь С - пропускная способность линии в битах в секунду, F - ширина полосы пропу-

скания линии в герцах, Рс - мощность сигнала, Рш - мощность шума.

Из этого соотношения следует, что теоретического предела пропускной способности линии

с фиксированной полосой пропускания не существует. Однако на практике такой предел

имеется. Действительно, повысить пропускную способность линии можно за счет увели-

чения мощности передатчика или же уменьшения мощности шума (помех) в линии связи.

Обе эти составляющие поддаются изменению с большим трудом. Повышение мощности

передатчика ведет к значительному увеличению его габаритов и стоимости. Снижение

уровня шума требует применения специальных кабелей с хорошими защитными экранами,

что весьма дорого, а также снижения шума в передатчике и промежуточной аппаратуре,

чего достичь весьма не просто. К тому же влияние мощностей полезного сигнала и шума

на пропускную способность ограничено логарифмической зависимостью, которая растет

далеко не так быстро, как прямо-пропорциональная. Так, при достаточно типичном ис-

ходном отношении мощности сигнала к мощности шума в 100 раз повышение мощности

передатчика в 2 раза даст только 15 % увеличения пропускной способности линии.

Близким по сути к формуле Шеннона является другое соотношение, полученное Найкви-

стом, которое также определяет максимально возможную пропускную способность линии

связи, но без учета шума в линии:

С = 2Flog2 М.

Здесь М - количество различимых состояний информационного параметра.

Если сигнал имеет два различимых состояния, то пропускная способность равна удвоен-

ному значению ширины полосы пропускания линии связи (рис. 8.15, а). Если же в пере-

датчике используется более двух устойчивых состояний сигнала для кодирования данных,

то пропускная способность линии повышается, так как за один такт работы передатчик

передает несколько битов исходных данных, например 2 бита при наличии четырех раз-

личимых состояний сигнала

Сетевые операционные системы NetWare фирмы Novell.

NetWare - сетевая операционная система и набор сетевых протоколов, которые используются в этой системе для взаимодействия с компьютерами-клиентами, подключёнными к сети. Операционная система NetWare создана компанией Novell. NetWare является закрытой операционной системой, использующей кооперативную многозадачность для выполнения различных служб на компьютерах с архитектурой Intel x86. В основе сетевых протоколов системы лежит стек протоколов Xerox Network Systems (англ.) (XNS). В настоящее время NetWare поддерживает протоколы TCP/IP и IPX/SPX. NetWare является одним из семейств XNS-систем. К таким системам, например, относятся Banyan VINES и Ungerman-Bass Net/One. В отличие от этих продуктов и XNS, система NetWare заняла существенную долю рынка в начале 1990-х и выдержала конкуренцию с Microsoft Windows NT, после выпуска которой прекратили своё существование другие конкурирующие с ней системы.

В основу NetWare была положена очень простая идея: один или несколько выделенных серверов подключаются к сети и предоставляют для совместного использования своё дисковое пространство в виде «томов». На компьютерах-клиентах с операционной системой MS-DOS запускается несколько специальных резидентных программ, которые позволяют «назначать» буквы дисков на тома. Пользователям необходимо зарегистрироваться в сети, чтобы получить доступ к томам и иметь возможность назначать буквы дисков. Доступ к сетевым ресурсам определяется именем регистрации.

Пользователи могут также подключаться к совместно используемым принтерам на выделенном сервере и выполнять печать на сетевых принтерах так же, как и на локальных.

Несмотря на то, что в ранних версиях NetWare все модули системы считались ненадёжными (любой неправильно работающий модуль мог нарушить работу всей системы), она была очень стабильной системой. Нередки случаи, когда серверы NetWare работают без вмешательства человека годами.

Под термином “информация ” понимают различные сведения, которые поступают к получателю. В литературе встречается наиболее часто следующее определение информации: информация – это сведения, являющиеся объектом передачи, распределения, преобразования, хранения или непосредственного использования. Это могут быть сведения о результатах измерения, наблюдения за каким-либо объектом и т.п. В дальнейшем нас будут интересовать лишь вопросы, связанные с информацией как объектом передачи.

Сообщение является формой представления информации. Одно и то же сведение может быть представлено в различной форме. Например, сведение о часе приезда вашего приятеля может быть передано по телефону или же в виде телеграммы. В первом случае мы имеем дело с информацией, представленной в непрерывном виде (непрерывное сообщение). Во втором случае – с информацией, представленной в дискретном виде (дискретное сообщение). При передаче сведений по телеграфу информация заложена в буквах, из которых составлены слова, и цифрах. Очевидно, что на конечном отрезке времени число букв или цифр конечное. Это и является отличительной особенностью дискретного или счетного сообщения. В то же время число различных возможных значений звукового давления, измеренное при разговоре, даже на конечном отрезке времени будет бесконечным. В современных цифровых системах телефонной связи в канал связи передаются кодовые комбинации, несущие информацию об отсчетах квантованного аналогового сигнала. Следовательно, такой телефонный квантованный сигнал относится к классу дискретных, и поэтому будем в дальнейшем рассматривать только вопросы передачи дискретных сообщений. В случае телефонной связи под сообщением будем понимать некоторую последовательность отсчетов квантованного аналогового сигнала, передаваемую в канале связи в виде последовательности кодовых комбинаций.

К числу основных информационных характеристик сообщений относятся количество информации в отдельных сообщениях, энтропия и производительность источника сообщений.

Количество информации в сообщении (символе) определяется в битах – единицах измерения количества информации. Чем меньше вероятность появления того или иного сообщения, тем большее количество информации мы извлекаем при его получении. Если в памяти источника имеется два независимых сообщения (а 1 и а 2) и первое из них выдается с вероятностью =1, то сообщение а 1 не несет информации, ибо оно заранее известно получателю.

Было предложено определять количество информации, которое приходится на одно сообщение a i , выражением

С реднее количество информации Н(А), которое приходится на одно сообщение, поступающее от источника без памяти, получим, применив операцию усреднения по всему объему алфавита:

Выражение (2.1) известно как формула Шеннона для энтропии источника дискретных сообщений. Энтропия – мера неопределенности в поведении источника дискретных сообщений. Энтропия равна нулю, если с вероятностью единица источником выдается всегда одно и то же сообщение (в этом случае неопределенность в поведении источника сообщений отсутствует). Энтропия максимальна, если символы источника появляются независимо и с одинаковой вероятностью.

Определим энтропию источника сообщений, если К = 2 и . Тогда

Отсюда 1 бит – это количество информации, которое переносит один символ источника дискретных сообщений в том случае, когда алфавит источника состоит из двух равновероятных символов.

Если в предыдущем примере взять , то Н(А) < 1 бит/сообщ. Таким образом, один бит – максимальное среднее количество информации, которое переносит один символ источника дискретных сообщений в том случае, когда алфавит источника включает два независимых символа.

Среднее количество информации, выдаваемое источником в единицу времени, называют производительностью источника

(бит/с). (2.2)

где Т – среднее время, отводимое на передачу одного символа (сообщения).

Для определения количества единичных элементов, передаваемых в одну секунду ввели понятие скорость модуляции (телеграфирования):

В=1/t (Бод)

Для каналов передачи дискретных сообщений вводят аналогичную характеристику – скорость передачи информации по каналу R (бит/с). Она определяется количеством бит, передаваемых в секунду. Максимально возможное значение скорости передачи информации по каналу называется пропускной способностью канала:

где 2D F – полоса пропускания канала,

Р с – мощность сигнала,

Р п – мощность помехи.

Сообщение, поступающее от источника, преобразуется в сигнал, который является его переносчиком в системах электросвязи.

Рис. 2.2. Принцип передачи сообщений

Система электросвязи обеспечивает доставку сигнала из одной точки пространства в другую с заданными качественными показателями. Схема передачи сообщений, в состав которой входят преобразователи сообщение–сигнал–сообщение, приведена на рис. 2.2.

Контрольные вопросы

  1. Дайте определения понятиям “информация”, “сообщение”.
  2. Как измеряется количество информации?
  3. Определить энтропию источника вырабатывающего независимые символы а 1 и а 2 , если р(а 1) = 0,3. Сравнить полученное значение с вариантом, когда р(а 1) = р(а 2) = 0,5.

Список литературы

Для оценки качества каналов передачи данных можно использовать следующие характеристики:

    скорость передачи данных по каналу связи;

    пропускную способность канала связи;

    достоверность передачи информации;

    надежность канала связи.

Скорость передачи данных . Различают бодовую (модуляционную) и информационную скорости (bit rate). Информационная скорость - определяется количеством битов, передаваемых по каналу связи за одну секунду бит/с, что в англоязычном варианте обозначается как bps.

Бодовая скорость измеряется в бодах (baud). Эта единица скорости получила свое название по фамилии французского изобретателя телеграфного аппарата Emilie Baudot – Э. Бодо. Бод – это число изменений состояния среды передачи в секунду (или числом изменений сигнала в единицу времени). Именно бодовая скорость определяется полосой пропускания линии. Скорость передачи информации 2400 бод означает, что состояние передаваемого сигнала изменялось 2400 раз в секунду, что эквивалентно частоте 2400 Гц.

Для иллюстрации этих понятий обратимся к передаче цифровых данных по обычным телефонным каналам связи. В самых ранних моделях модемов, эти две скорости совпадали. Современные модемы кодируют несколько битов данных в одном изменении состояния аналогового сигнала и очевидно, что скорость передачи данных и скорость работы канала в этом случае не совпадают. Если на бодовом интервале (между соседними изменениями сигнала) передается N бит, то число значений модулируемого параметра несущей (переносчика) равно 2 N . Например, при числе градаций 16 и скорости 1200 бод одному боду соответствует 4 бит/с и информационная скорость составит 4800 бит/с, т.е. скорость в битах в секунду превышает скорость в бодах. В частности, модемы на 2 400 и 1 200 бит/с передают 600 бод, а модемы на 9 600 и 14 400 бит/с- 2 400 бод.

В аналоговых телефонных сетях скорость передачи данных определяется типом протокола который поддерживают оба модема, участвующие в соединении. Так, современные модемы работают по протоколам V.34+ со скоростью до 33600 бит/с или по протоколу асимметричного обмена данными V.90 со скоростью передачи до 56 Kbps.

Стандарт V.34+ позволяет работать по телефонным линиям практически любого качества. Первоначальное соединение модемов происходит по асинхронному интерфейсу на минимальной скорости 300 бит/с, что позволяет работать на самых плохих линиях. После тестирования линии выбираются основные параметры передачи (частота несущей 1,6-2,0 КГц, способ модуляции, переход в синхронный режим) которые в последствии могут динамически изменяться без разрыва связи, адаптируясь к изменению качества линии.

Протокол V.90 был принят Международным Союзом Электросвязи (МСЭ) в феврале 1998 г. В соответствии с этим стандартом модемы, установленные у пользователя, могут принимать данные от провайдера сети (входящий поток – Downstream) на скорости 56 Kbps, а посылать (исходящий поток – Upstream) – на скорости до 33,6 Kbps. Достигается это за счет того, что данные на узле сети, подключенному к цифровому каналу, подвергаются только цифровому кодированию, а не аналого-цифровому преобразованию, которое всегда вносит шум дискретизации и квантования. На стороне пользователя из-за "последней аналоговой мили" происходит и цифро-аналоговое (в модеме) и аналого-цифровое преобразование (на АТС), поэтому увеличение скорости невозможно. Очевидно, что применить такую схему удается только там, где один из модемов имеет доступ к цифровому каналу. Практически только провайдер сети Интернет может быть связан с АТС пользователя цифровым каналом.

Для соединений типа абонент-абонент по коммутируемой телефонной сети общего пользования новая технология непригодна и работа возможна только на скорости не выше 33,6 Kbps.

Скорости передачи цифровой информации для ЛВС различных типов приведены в таблице 2.1, а для глобальных сетей в таблице 2.2.

Таблица 2.1

Тип сети (протокол канального уровня)

Вид линии передачи данных

Толстый коаксиальный кабель (10Base-5)

Тонкий коаксиальный кабель (10base-2)

Неэкранированная витая пара UTP категории 3 (10Base-T)

Оптоволокно (10Base-F)

Оптоволокно (100Base-FX)

Gigabit Ethernet

Многомодовое оптоволокно (1000Base-SX)

Одномодовое оптоволокно (1000Base-LX)

Твинаксиальный кабель(1000Base-СX)

Token Ring (High Speed Token Ring)

Оптоволокно

FDDI (Fiber Distributed Data Interface)

Оптоволокно

Таблица 2.2

Иерархия скоростей цифровых каналов глобальных сетей

Тип сети

Тип интерфейса и линии передачи данных

Скорость передачи данных, Мбит/с

T1/E1, кабель из 2-ух витых пар

T2/E2,коаксиальный кабель

T3/E3, коаксиальный и оптический кабель или радиолинии СВЧ

STS-3, OC-3/STM-1

STS-9, OC-9/STM-3

STS-12, OC-12/STM-4

STS-18, OC-18/STM-6

STS-24, OC-24/STM-8

STS-36, OC-36/STM-12

STS-48, OC-48/STM-16

BRI (базовый)

PRI (специальный)

Абонент-сеть (Upstream)

Сеть-абонент (Downstream)

На ВОЛС достигнуты рекордные скорости передачи информации. В экспериментальной аппаратуре с использованием метода мультиплексирования с разделением каналов по длинам волн (WDM - Wavelengths Division Multiplexing) достигнута скорость 1100 Гбит/с на расстоянии 150 км. В одной из действующих систем на основе WDM передача идет со скоростью 40 Гбит/с на расстояния до 320 км. В методе WDM выделяется несколько несущих частот (каналов). Так, в последней упомянутой системе имеются 16 таких каналов вблизи частоты 4*10 5 ГГц, отстоящих друг от друга на 10 3 ГГц, в каждом канале достигается скорость 2,5 Гбит/с.

Максимально возможная информационная скорость, пропускная способность C (bandwidth ) связана с полосой пропускания F (точнее с верхней частотой полосы пропускания) канала связи формулой Хартли-Шеннона. Пусть N – число возможных дискретных значений сигнала, например число различных значений модулируемого параметра. Тогда на одно изменение величины сигнала, в соответствии с формулой Хартли, приходится не более I=log 2 N бит информации.

Максимальную информационную скорость передачи можно определить как

С = log 2 N / t,

где t - длительность переходных процессов, приблизительно равная (3-4)Т В, а Т В = 1/(2πF). Тогда

бит/с, (2.1)

В случае канала с помехами количество различимых значений модулированного сигнала N должно быть ≤ 1+A, где A - отношение мощностей сигнала и помехи.

Для пользователей вычислительных сетей значение имеют не абстрактные биты в секунду, а информация, единицей измерения которой служат байты или знаки. Поэтому более удобной характеристикой канала является его реальная или эффективная скорость , которая оценивается количеством знаков (символов), передаваемых по каналу за секунду (cps, character per second), не включая служебную (например, биты начала и конца блока, заголовки блоков и контрольные суммы).

Эффективная скорость зависит от ряда факторов, среди которых не только скорость передачи данных, но и способ передачи, и качество канала связи, и условия его эксплуатации, и структура сообщений. Например, так как в среднем, при асинхронном методе передачи данных через модем каждым 10 переданным битам соответствует 1 байт или 1 символ сообщения, то 1 cps=10 bps. Для повышения эффективной скорости передачи используются различные методы сжатия информации, реализуемые как самими модемами, так и коммуникационным ПО.

Существенной характеристикой любой коммуникационной системы является достоверность передаваемой информации. Достоверность передачи информации или уровень ошибок (error ratio) оценивают либо как вероятность безошибочной передачи блока данных, либо как отношение количества ошибочно переданных битов к общему числу переданных битов (единица измерения: количество ошибок на знак - ошибок/знак) Например, вероятность 0,999 соответствует 1 ошибке на 1000 бит (очень плохой канал). Требуемый уровень достоверности должны обеспечивать как аппаратура канала, так и состояние линии связи. Нецелесообразно использовать дорогостоящую аппаратуру, если линия связи не обеспечивает необходимых требований по помехоустойчивости.

При передаче данных в вычислительных сетях этот показатель должен лежать в пределах 10 -8 -10 -12 ошибок/знак, т.е. допускается не более одной ошибка на 100 миллионов переданных битов. Для сравнения, допустимое количество ошибок при телеграфной связи составляет примерно 3·10 -5 на знак.

Наконец, надежность коммуникационной системы определяется либо долей времени исправного состояния в общем времени работы, либо средним временем безотказной работы в часах. Вторая характеристика позволяет более эффективно оценить надежность системы.

Для вычислительных сетей среднее время безотказной работы должно быть достаточно большим и составлять, как минимум, несколько тысяч часов

Данные для расчета:

Число рабочих станций - М=21

Скорость ПД - В =10 Мбит/с

Интенсивность потока пакетов - л = 124,2 пак./с

Длина пакета - 1 П =1500 байт

Длина сети - 1 с =0,12 км

Расчет параметров ЛВС:

1. Время распространения сигнала по физической среде:

V=231000 км/с

2. Время передачи пакета по сети

3. Параметр дальнодействия:

4. Пропускная способность моноканала:

5. Коэффициент нагрузки моноканала:

Нормированная средняя задержка передачи пакетов при n=const:

Критерий эффективности ЛВС:

> Расчет скорости передачи по информационному каналу

В сетях с пакетной коммутацией применяется алгоритм работы, в котором принимающая сторона анализирует и принимает решение о выдаче комбинации потребителю информации или о ее стирании и посылке по обратному каналу сигнала о повторной передаче этой кодовой комбинации (переспрос), т.е., алгоритм системы РОС-НП (Решающая обратная связь с непрерывной передачей).

Такая система осуществляет передачу последовательности кодовых комбинаций при отсутствии сигналов решения по предшествующим (S+1) комбинациям. После обнаружения ошибки в (S+1) комбинации, приемник посылает запрос на передатчик, который, получив этот запрос, заканчивает передачу очередного блока и повторяет искаженный (S+1) блок. Однако, поскольку передатчик не ожидал сигнала обратной связи, то он успел передать несколько блоков, пока получил запрос. Поэтому, для сохранения порядка следования блоков передатчик вынужден повторить не только искаженный блок, но и некоторое число блоков, которое он успел передать.

Параметром такой системы с РОС-НП является средняя относительная скорость передачи (R):

Где k - длина информационной части кодовой комбинации;

n - общая длина кодовой комбинации;

Рcm (n) - вероятность обнаружения ошибки или вероятность стирания;

h - число повторяемых блоков, которое определяется по формуле:

Где ]х[- наименьшее целое число большее или равное х;

t ож -- время ожидания сигнала решения:

t p - время распространения по каналу связи;

t a6 - время анализа блока в приемнике;

t c -- длительность сигнала решения;

t ac - время анализа сигнала решения;

ф о -1/В - длительность единичного элемента:

Вероятность стирания Р сm ,(n) рассчитывается по следующей формуле:

Где t 0 - кратность гарантированно обнаруживаемых ошибок

t 0 < d 0 -1, (d 0 - минимальное кодовое расстояние),

Р ош - вероятность ошибки на единичный элемент.

Относительная скорость передачи R характеризует эффективность использования пропускной способности С прямого канала связи. Скорость передачи информации V определяется по формуле:

Результаты расчетов сведены в таблицу 4.2.

Таблица 4.2. Расчет скорости передачи по каналу

Вероятность ошибки на единичный элемент Р ош

Скорость модуляции В, Бод

Пропускная способность С, Бит/С

Средняя относительная скорость передачи R

Скорость передачи V, Бит/с

> Расчет вероятности ложного фазирования кадра в информационном канале

Рассмотрим причины которые могут привести к тому, что приемник А не примет ни одного кадра. Во-первых, может не включиться модем А из-за не выделения несущей. Во-вторых, может не полностью осуществиться синхронизация дискретного канала, что снизит его качество и может случиться так, что все кадры будут поражены ошибками. Третьей причиной является не выделение или ложное выделение флага. Оценим вероятности срыва сеанса связи по этой причине.

Если используется дискретный канал (ДК) без памяти, то для протокола.

HDLC вероятность не выделения флага Р м =nР ош =8Р ош (Р ош - вероятность ошибки на единичный элемент).

В результате появления ошибок выделится ложный флаг из информации или служебных признаков. Допустим, что эта ситуация имеет место в первом кадре. Тогда при отсутствии ошибок в остальное время сеанса первый кадр будет преобразован в два, а все остальные будут приняты верно. Оценим вероятность возникновения такой ситуации для ДК без памяти. Естественно, что флаг может быть получен из любой элементарной последовательности при суммировании его с соответствующим вектором ошибки. Рассмотрим сначала те последовательности, которые отличаются от флага одним элементом. Так как внутри кадра не может передаваться более пяти единиц подряд, то их будет шесть: 00111110, 01011110, 01101110, 01110110, 01111010, 0111110.

Вероятность Pi того, что на данных позициях кадра будет передаваться какая-либо из последовательностей, отличных от флага в общем случае равна: Р=(п-2)2 -п, а вероятность выделения ложного флага на данных позициях:

Поскольку это возможно на любых n позициях внутри кадра, то вероятность выделения ложного флага внутри i-ro кадра равна:

и для n=8 с достаточной степенью точности

Где Li- длина кадра.

Пусть L ki = 1024 и Р ош = 10 -4 ,тогда

Р лм =(1024-7)3*128 -1 *10 -4 =2,3*10 -3 ,

т.е. в среднем на тысячу переданных кадров 2,3 будут искажены из-за ложного выделения флага.

кабельный структурированный сеть фазирование

Под термином “информация ” понимают различные сведения, которые поступают к получателю. В литературе встречается наиболее часто следующее определение информации: информация – это сведения, являющиеся объектом передачи, распределения, преобразования, хранения или непосредственного использования. Это могут быть сведения о результатах измерения, наблюдения за каким-либо объектом и т.п. В дальнейшем нас будут интересовать лишь вопросы, связанные с информацией как объектом передачи.

Сообщение является формой представления информации. Одно и то же сведение может быть представлено в различной форме. Например, сведение о часе приезда вашего приятеля может быть передано по телефону или же в виде телеграммы. В первом случае мы имеем дело с информацией, представленной в непрерывном виде (непрерывное сообщение). Во втором случае – с информацией, представленной в дискретном виде (дискретное сообщение). При передаче сведений по телеграфу информация заложена в буквах, из которых составлены слова, и цифрах. Очевидно, что на конечном отрезке времени число букв или цифр конечное. Это и является отличительной особенностью дискретного или счетного сообщения. В то же время число различных возможных значений звукового давления, измеренное при разговоре, даже на конечном отрезке времени будет бесконечным. В современных цифровых системах телефонной связи в канал связи передаются кодовые комбинации, несущие информацию об отсчетах квантованного аналогового сигнала. Следовательно, такой телефонный квантованный сигнал относится к классу дискретных, и поэтому будем в дальнейшем рассматривать только вопросы передачи дискретных сообщений. В случае телефонной связи под сообщением будем понимать некоторую последовательность отсчетов квантованного аналогового сигнала, передаваемую в канале связи в виде последовательности кодовых комбинаций.

К числу основных информационных характеристик сообщений относятся количество информации в отдельных сообщениях, энтропия и производительность источника сообщений.

Количество информации в сообщении (символе) определяется в битах – единицах измерения количества информации. Чем меньше вероятность появления того или иного сообщения, тем большее количество информации мы извлекаем при его получении. Если в памяти источника имеется два независимых сообщения (а 1 и а 2) и первое из них выдается с вероятностью =1, то сообщение а 1 не несет информации, ибо оно заранее известно получателю.

Было предложено определять количество информации, которое приходится на одно сообщение a i , выражением

.

С реднее количество информации Н(А), которое приходится на одно сообщение, поступающее от источника без памяти, получим, применив операцию усреднения по всему объему алфавита:

. (2.1)

Выражение (2.1) известно как формула Шеннона для энтропии источника дискретных сообщений. Энтропия – мера неопределенности в поведении источника дискретных сообщений. Энтропия равна нулю, если с вероятностью единица источником выдается всегда одно и то же сообщение (в этом случае неопределенность в поведении источника сообщений отсутствует). Энтропия максимальна, если символы источника появляются независимо и с одинаковой вероятностью.

Определим энтропию источника сообщений, если К = 2 и . Тогда

Отсюда 1 бит – это количество информации, которое переносит один символ источника дискретных сообщений в том случае, когда алфавит источника состоит из двух равновероятных символов.

Если в предыдущем примере взять , то Н(А) < 1 бит/сообщ. Таким образом, один бит – максимальное среднее количество информации, которое переносит один символ источника дискретных сообщений в том случае, когда алфавит источника включает два независимых символа.

Среднее количество информации, выдаваемое источником в единицу времени, называют производительностью источника

(бит/с). (2.2)

где Т – среднее время, отводимое на передачу одного символа (сообщения).

Для определения количества единичных элементов, передаваемых в одну секунду ввели понятие скорость модуляции (телеграфирования):

В=1/t (Бод)

Для каналов передачи дискретных сообщений вводят аналогичную характеристику – скорость передачи информации по каналу R (бит/с). Она определяется количеством бит, передаваемых в секунду. Максимально возможное значение скорости передачи информации по каналу называется пропускной способностью канала:

где 2D F – полоса пропускания канала,

Р с – мощность сигнала,

Р п – мощность помехи.

Сообщение, поступающее от источника, преобразуется в сигнал, который является его переносчиком в системах электросвязи.

Рис. 2.2. Принцип передачи сообщений

Система электросвязи обеспечивает доставку сигнала из одной точки пространства в другую с заданными качественными показателями. Схема передачи сообщений, в состав которой входят преобразователи сообщение–сигнал–сообщение, приведена на рис. 2.2.

Контрольные вопросы

  1. Дайте определения понятиям “информация”, “сообщение”.
  2. Как измеряется количество информации?
  3. Определить энтропию источника вырабатывающего независимые символы а 1 и а 2 , если р(а 1) = 0,3. Сравнить полученное значение с вариантом, когда р(а 1) = р(а 2) = 0,5.

Список литературы

  1. Кох Р., Яновский Г. Эволюция и конвергенция в электросвязи. – М.: Радио и связь, 2001. – 280 с.
  2. Концепция развития рынка телекоммуникационных услуг Российской Федерации. “СвязьИнформ”, 2001, № 10. с. 9-32.