Процессоры

31.01.2019
  • Новейший 6 ядерный Core i5 - по цене 4 ядерного i3 8350K ">Новейший 6 ядерный Core i5 - по цене 4 ядерного i3 8350K
  • GTX 1080 Ti ASUS ROG STRIX Gaming дешево в XPERT.RU
  • XPERT.RU НЕРЕАЛЬНО ОБРУШИЛ ЦЕНУ НА 8700К . ДЕЛАЙ ЗАКАЗ!!!"> XPERT.RU НЕРЕАЛЬНО ОБРУШИЛ ЦЕНУ НА 8700К . ДЕЛАЙ ЗАКАЗ!!!
  • Распродажа 8 ядерника - цена тебя удивит!

Вы можете отметить интересные вам фрагменты текста,
которые будут доступны по уникальной ссылке в адресной строке браузера.

Зависимость производительности от частоты шины и параметров памяти на ASUS A7N8X-X (nForce2 400)

Enot 19.02.2004 01:45 | версия для печати | архив

Эта работа была прислана на наш "бессрочный" конкурс статей , однако не вызвала особого интереса и подверглась лёгкой критике в конференции . Автор учёл замечания, доработал и дополнил статью, так что сейчас вы читаете обновлённую версию.

Целью статьи является определение влияния частоты системной шины процессора и параметров памяти на производительность. Особое внимание уделено провалу производительности на частоте 183 МГц и параметру памяти Active Precharge Delay.

Материнская плата ASUS A7N8X-X обладает некоторыми специфическими "особенностями", которые не позволяют распространять результаты на все платы nForce2. Тем не менее, общие выводы применимы к большинству других материнских плат.

Тестовая система.

  • Процессор – AMD Athlon 1700+ Thoroughbred-B. Максимальный разгон – 2200 МГц при 1,85 В.
  • Память – PC3200, 1х512 МБ, 5-2-2-2,5, Nanya. Работает синхронно с процессором.
  • Материнская плата – nForce2 400, ASUS A7N8X-X, BIOS 1007. CPU Interface = Optimal (заблокирован в данной прошивке). Bus Disconnect = off. Максимальный разгон – 208 МГц.
  • Видеокарта – Radeon 9000, 64 МБ, 128 bit.
  • Жёсткий диск – WD400JB.
  • Операционная система – MS Windows 2000 SP4.

Материнская плата ничем не отличается от A7N8X кроме одноканальности и отсутствия дополнительных контроллеров. У них даже номера прошивок BIOS и внесённые изменения совпадают. Разница в производительности с двухканальной системой, в большинстве случаев, находится в пределах нескольких процентов. Хорошая статья про влияние двухканальности на производительность – http://www.lostcircuits.com/motherboard/asus_a7n8x-x/ .

Какие тесты использовались?

Очевидно, падение производительности на 183 МГц не связано с процессором. Поэтому использовались программы, интенсивно работающие с большими объёмами данных и сильно загружающие подсистему памяти. Были выбраны два архиватора: 7-zip (алгоритм LZMA) и RKC (алгоритм PPM). Размер файла для сжатия – 20 МБ. Пиковое использование оперативной памяти для RKC - 400 МБ, для 7-zip – 200 МБ. В 7-zip при увеличении размера слова большую роль играет процессор, поэтому тесты выполнялись при размере слова 255 и 64.

Дополнительно использовался Unreal Tournament 2003 (UT2003). Эта игра является одной из лучших программ для оценки общей производительности домашнего компьютера. В отличие от 3DMark, результаты меньше зависят от видеокарты, а увеличенное до 32 количество ботов заставляет процессор больше времени тратить на работу искусственного интеллекта и физику. Для увеличения точности, время выполнения теста было увеличено до 240 секунд (около 7 минут реального времени).

Для измерения пропускной способности и задержек памяти использовался ScienceMark 2.0. Выбор именно этой программы обусловлен тем, что она сразу представляет задержки памяти в абсолютном значении в наносекундах и формирует лог-файл. Для лучшего восприятия, на графиках и диаграммах приводятся не задержки, а величины, обратные задержкам.

Итак, использовались:

  • 7-zip, fb=255. Параметры командной строки -mx=9 -mfb=255 .
  • 7-zip, fb=64. Параметры командной строки -mx=9 -mfb=64 .
  • RKC. Параметры командной строки -mxx -M420m .
  • UT2003. Настройки качества – все на максимум. Разрешение 640х480х32. Параметры командной строки dm-antalus?spectatoronly=true?numbots=32?quickstart=true -benchmark -seconds=240 -exec=..\Benchmark\Stuff\botmatchexec.txt .
  • ScienceMark 2.0.

Насколько можно доверять результатам?

Изучение встроенного теста 7-zip выявило такую особенность. Во-первых, первые результаты после перезагрузки очень сильно отличаются (до 5%). Во-вторых, на экране отображаются результаты только первого прохода, что не логично. Приходится постоянно нажимать кнопку "Restart" и вручную усреднять результаты каждого прохода, которые также имеют большой разброс. Поэтому тестирование выполнялось при помощи консольной версии и утилиты timer 3.01.

В ScienceMark 2.0 тест выполнялся несколько раз, до получения стабильных задержек памяти. Значения задержек могут отличаться на один такт процессора.

Информация о частоте шины и процессора получалась при помощи CPU-Z. Устанавливаемая в BIOS частота может немного отличаться от реальной (до 1 МГц). Причем было замечено, что для частоты 200 МГц в BIOS, если FSB Spread Spectrum = Disabled, то реальная частота была 200,5 МГц, а если FSB Spread Spectrum = 0,50%, то реальная частота была 199,2 МГц. Достаточно хитрая "особенность".

Полученные результаты отличаются весьма незначительно. Поэтому на всех графиках и диаграммах приведен интервал 80%-100% или 90%-100%. В реальной жизни такие различия почти незаметны и представляют интерес больше для любителей разгона и тонкой настройки. Для оценки погрешности измерения, на двух разных частотах тесты были запущены несколько раз и взята максимальная разница между результатами. Конечно, такая разница не является строгой погрешностью, но для оценки её порядка этого вполне достаточно.


Зависимость производительности от параметров памяти.

Сначала определим влияние каждого из параметров на производительность. Однако тут возникли некоторые затруднения с материнской платой ASUS A7N8X-X. Дело в том, что изменение CAS Latency с 2,5 до 3 не приводило к изменению результатов при конфигурации 200х9,5. А при 160x12,5 (минимальная частота работы при CAS Latency = 2), не было разницы между 2 и 2,5. При этом CPU-Z показывал, что значение CAS Latency изменено. Поэтому тестирование проводилось при такой странной конфигурации 180х11, на которой все нормально работало. Такая "особенность" не всегда принимается во внимание. Например, www.terralab.ru при изучении влияния параметров памяти на материнской плате ASUS A7N8X сделала ошибочный вывод о том, что CAS Latency почти не влияет на производительность. Конечно, такого быть не может. При конфигурации 180х11 заметная разница есть, а при 200х9,5 – вдруг исчезала.


В основном, влияние оказывают параметры RAS to CAS Latency и CAS Latency. Причем RAS to CAS немного большее. RAS Precharge имеет гораздо меньшее значение, а увеличение Active Precharge Delay может даже незначительно повышать производительность.

Рассмотрим Active Precharge Delay подробнее. Неплохую информацию об этом можно найти здесь . Кстати, там же можно почитать и про CMD Rate. Вместо выражения "Active Precharge Delay" (в документации на материнскую плату - SDRAM Active Precharge Delay, Row-Active Delay) производитель памяти Mushkin использует "tRAS". Смысл этого параметра достаточно сложен для понимания и адекватного перевода. Вот оригинальное определение: "... tRAS short for the RAS Pulse width. Historically, tRAS was defined as the time needed to establish the necessary potential between a bitline pair within the memory array until it was safe to write back the data to the memory cells of origin after a (destructive) read."

Active Precharge Delay (tRAS) = RAS to CAS Latency (tRCD) + CAS Latency + 2

В теории максимальная производительность для конфигурации памяти Х-2-2-2,5 (Х - Active Precharge Delay) должна быть при значении Active Precharge Delay не менее 2 + 2,5 + 2 = 7. Проверим это на практике.


Заметно реагирует на изменения параметра только UT2003. В остальных приложениях разница очень мала. Но везде максимум находится в районе Active Precharge Delay = 8. По сообщениям в форумах, разница в пропускной способности памяти должна быть больше. Возможно, это объясняется одноканальным режимом работы.

Теперь увеличим RAS to CAS Latency на 3. В теории это должно привести к смещению максимума производительности на 3 позиции. Учитывая, что только в UT2003 есть заметные изменения, остальные тесты не использовались. На диаграмме для сравнения приведены предыдущие результаты.


Смещение очень невыразительное, но есть. Максимум находится в районе Active Precharge Delay = 9. Хорошо заметно увеличение падения производительности при минимальных значениях Active Precharge Delay 4 и 5, а также небольшое уменьшение падения при максимальных значениях 13 и 14. Такие изменения вызваны смещением максимума вправо. Все это согласуется с теорией, но приведенную формулу можно использовать только как приблизительную.

Зависимость производительности от частоты шины.

Для исследования влияния частоты шины можно воспользоваться простым методом, когда при фиксированном коэффициенте процессора меняется частота шины. В идеальном случае должна получиться прямая линия с коэффициентом 1. По отклонению от линейности можно найти и оценить провалы в производительности. Однако данный метод не учитывает, что при фиксированной частоте процессора производительность растет нелинейно от частоты шины. Практическая ценность такого метода невелика. Поэтому использовался другой метод.

Исследование проводилось с фиксированной частотой процессора. Учитывая, что при разных частотах шины нельзя точно подобрать коэффициенты умножения, использовалась линейная интерполяция. Т.е. получались результаты при частоте процессора выше требуемой фиксированной и ниже, и далее использовалась формула:

Рез = (Част2 – Част) * (Рез2 – Рез1)/(Част2 – Част1) + Рез1

Первоначально предполагалось выполнить исследование при частотах 166 МГц, 182 МГц, 183 МГц, 200 МГц и получить результаты, лежащие на двух параллельных прямых. Разница между этими прямыми должна быть равна провалу производительности на 183 МГц. Но в процессе предварительного тестирования результаты сильно разошлись с теорией. Поэтому было выполнено исследование всего диапазона от 166 МГц до 205 МГц с шагом в 5 МГц. Тесты не выполнялись при частотах шины 182 МГц и 183 МГц. Провести исследование с шагом в 1МГц нереально. Однако падение производительности происходит именно здесь.

К сожалению, "особенности" A7N8X-X не позволили использовать только интерполяцию. На частоте 185 МГц возникли две проблемы. Во-первых, не все коэффициенты были доступны. Во-вторых, при коэффициентах х8,5 и х9,5 задержки памяти и производительность приложений были значительно ниже, чем при х11 и х11,5. Поэтому была подобрана удобная фиксированная частота процессора 1900 МГц. Результаты при коэффициентах х8,5 и х9,5 приводятся отдельно. Когда невозможно было использовать интерполяцию, использовалась экстраполяция (частоты процессора, лежали одновременно выше или ниже фиксированной частоты 1900 МГц), причем для 185х11, 195х11,5, 200х11,5 коэффициент наклона линии брался от результатов на 190 МГц. Точность при этом значительно снизилась.


Недоступность некоторых коэффициентов процессора при частоте выше 182 МГц свойственно многим материнским платам и обсуждалось в форумах. Различия в производительности при разных коэффициентах наблюдалось на материнской плате Abit NF7 rev. 2.0. Для памяти 5-2-2-2 приводятся такие результаты:

Athlon XP 3000+ (333MHz FSB) Athlon XP 3000+ (400MHz FSB) Athlon XP 3200+ (400MHz FSB)
Dual DDR333 SDRAM Dual DDR400 SDRAM
Latency, ns 96 81 85

А теперь сравните с полученными результатами:

nForce2 400 ASUS A7N8X-X, PC3200 5-2-2-2.5
Конфигурация Частота шины, МГц Частота процессора, МГц Пропускная способность памяти (ScienceMark 2.0), МБ/с Задержки памяти (ScienceMark 2.0), нс
166x11 167.00 1837.6 2 406 97.41
166x11.5 167.00 1921.0 2 421 96.30
200x11 200.50 2205.1 2 872 82.54
200x9.5 200.50 1904.3 2 700 91.37

Итак, результаты низкоуровневых тестов.

На частоте 185 МГц (на самом деле на 183 МГц) происходит небольшое падение производительности. Точнее, для коэффициентов х10,5 – х11,5 прирост отсутствует. В остальном, все линейно от частоты шины с коэффициентом близким к единице.

А теперь результаты приложений.

Как видно, падение производительности происходит не только на 185 МГц, но и на 190 МГц. Графики выглядят довольно странно.

Почему так происходит?

Провал в производительности происходит из-за изменения параметров чипсета nForce2. Другого объяснения нет. Примечательна частота 183 МГц. Это как раз середина между 166 МГц и 200 МГц. Т.е. до 183 МГц используются параметры 166 МГц, а после 183 МГц используются более медленные параметры 200 МГц. Падение на 190 МГц, возможно, связано с замедлением работы nForce2 DASP. Такие изменения параметров чипсета необходимы для стабильной работы на высоких частотах и далеко не бесполезны. Например, на тестовой системе энергосберегающий режим Suspend To Ram на частоте 182 МГц работает с CAS Latency 3, а на частоте 183 МГц с CAS Latency 2,5.

Для изучения вопроса с параметрами чипсета использовалась программа WPCREDIT 1.2a , которая позволяет просматривать и изменять конфигурационные регистры PCI устройств.

К сожалению, разобраться без документации в параметрах, относящихся к памяти, затруднительно. Даже при небольшом изменении частоты шины в BIOS содержимое регистров сильно меняется. Что уж говорить о значительных изменениях частоты.


Но оказалось возможным сначала сохранить содержимое регистров на одной частоте, а затем загрузить их на другой. Правда это не относится к устройству с Device ID 01E0, которое, вероятно, отвечает за установку текущей частоты шины. Если попытаться загрузить данные в его регистры, то происходит зависание системы. При загрузке в регистры устройства с Device ID 01EE, вероятно, происходит нарушение работы AGP. В UT2003 появляется мусор из треугольников.

Тем не менее, при загрузке регистров на частоте 200 МГц данными, сохранёнными при 133 МГц, наблюдается стабильное увеличение производительности. Кроме того, было выяснено, что утилита ClockGen при изменении частоты почти не меняет содержимое конфигурационных регистров. Если изменить частоту шины при помощи этой утилиты с первоначальных 133 МГц до 200 МГц, то результаты совпадают с результатами, полученными при загрузке регистров (по тесту 7-zip). Проблем в UT2003 при этом не возникает. Поэтому в дальнейшем использовался только ClockGen и подразумевается, что если написано "параметры от 133 МГц", то это значит, что частота шины была установлена в 133 МГц из BIOS, а затем из Windows увеличена при помощи ClockGen.

Было проведено исследование влияния внутренних параметров чипсета nForce2 на производительность. При частоте шины 200 МГц были использованы параметры чипсета от стандартных частот 200 МГц, 166 МГц, 133 МГц. Параметры чипсета от 100 МГц вызывали зависание. Состав тестовых программ был немного изменён. Вместо ScienceMark 2.0 использовался CacheMem 2.6. Вместо RKC, 7-zip fb=255 и 7-zip fb=64 использовался 7-zip fb=64 с большим размером исходного файла для архивирования.

Итак, результаты:


Вот она, потерянная производительность. Причем, если после перехода с 133 МГц на 166 МГц падение незначительно, то после перехода с 166 МГц на 200 МГц падение достигает 3%. Несмотря на то, что при коэффициенте х9,5 задержки памяти значительно уменьшились, они все равно немного отличаются от задержек при коэффициенте х11: 82,97 нс для х9,5 и 80,28 нс для х11. Полученное значение задержек памяти для х11 совпадает с теоретическим значением 80,67 нс, рассчитанным линейно от 96,89 нс на 166 МГц.

Теперь рассмотрим частоты 180 МГц и 190 МГц, на которых происходит падение. Если использовать конфигурацию 182х11,5 и 190х11, то частота процессора будет совпадать (разница 0,12%), и использование интерполяции не потребуется.


Если просто изменить конфигурацию с 182х11,5 на 190х11 в BIOS, то низкоуровневые характеристики памяти изменяются на 2%, вместо теоретических 4,5%. Скорость 7-zip и UT2003 просто падает (пресловутое падение производительности). Однако, если при 190х11 установить параметры чипсета от 182 МГц, то все становится на свои места. Везде есть прирост. Низкоуровневые характеристики памяти выросли немного больше чем 4,5%. Частично это можно списать на относительно большую для низкоуровневых тестов памяти погрешность.

Совершенно случайно было найдено объяснение особенностям RKC. Если посмотреть на график, то в отличие от 7-zip и UT2003, разница в результатах между х8,5 - х9,5 и х10,5 – х11,5 у него почти отсутствует. Чтобы понять, почему так происходит достаточно взглянуть на таблицу:

Block size 8 Мб, 512 byte stride 200х11, задержки памяти 200х9,5, задержки памяти
cycles нс cycles нс
ScienceMark 2.0 183 82,99 174 91,37
CPU-Z 1.20a 183 82,99 159 83,50

Как видно, ScienceMark 2.0 и CPU-Z 1.20a используют несколько разные алгоритмы для определения задержек. При изменении коэффициента с х11 на х9,5 CPU-Z 1.20a, равно как и RKC, почти не "замечают" разницы. Получается, что ScienceMark 2.0 и CPU-Z 1.20a не отражают реальной картины и их результаты относительны. Вот ScienceMark 2.0 показывает, что задержки сильно изменились, а реальное приложение RKC, чувствительное к задержкам, на это почти не реагирует. И наоборот, CPU-Z 1.20a показывает, что разница небольшая, а результаты 7-zip и UT2003 отличаются значительно. Результаты CacheMem 2.6 совпадают с результатами ScienceMark 2.0. Назвать какую-либо программу "неправильной" нельзя. Они просто измеряют задержки по-разному.

Попытки объяснения недоступности некоторых коэффициентов и низкой производительности при х8,5 и х9,5 путём изменения параметров чипсета ни к чему не привели. Возможно, это связано с некоторыми регистрами устройства с Device ID 01E0. Значения этих регистров просто не поддавались корректировке.

Насколько результаты исследования можно распространять на другие материнские платы nForce2?

Если взять две материнские платы разных производителей на одном и том же чипсете, то при одинаковой конфигурации они должны показывать идентичные результаты. Ведь собственно сам чипсет – это тот же процессор (набор контроллеров) и работает синхронно с задающим генератором. В отличие от центрального процессора, чипсет имеет большое количество настраиваемых параметров. Эти параметры определяются разработчиком чипсета. Значения этих параметров, обеспечивающие стабильную работу с максимальной производительностью, могут зависеть не только от конфигурации, но и от конкретного экземпляра. Учитывая, что для разработчиков более важной является стабильность, рекомендованные значения параметров чипсета стараются брать с запасом, чтобы гарантировать устойчивую работу даже при неблагоприятных условиях. В большинстве случаев, можно безболезненно изменять некоторые параметры в сторону увеличения производительности.

Несмотря на отсутствие документации, можно утверждать, что изменение параметров, вызывающее провал производительности на 183 МГц, является рекомендованным разработчиком чипсета nForce2. В пользу этого говорит и то, что такой провал есть на одной из первых плат на nForce2 ASUS A7N8X (напомню, A7N8X-X является его урезанной версией), которая создавалась в плотном сотрудничестве с nVidia. Да и "притормаживать" свою продукцию производители вряд ли догадались самостоятельно. Кроме того, падение на 183 МГц точно есть на плате Soltek 75FRN-L, и было впервые обнаружено именно на ней. Но в конечном итоге, все зависит только от производителя, конкретной модели платы и даже версии BIOS.

Для изучения этого вопроса было проведено небольшое исследование обзоров материнских плат на nForce2. При этом был учтен момент с завышением реальных частот и соответственно завышением результатов некоторыми непорядочными производителями. Именно о непорядочности говорит такой факт, что сам nForce2 имеет встроенный генератор частоты, и поэтому на всех материнских платах на этом чипсете частоты должны точно совпадать. Например, по данным www.anandtech.com плата Gigabyte 7NNXP имеет частоту 202,77 МГц, DFI NFII Ultra LANParty – 201,35 МГц вместо положенных 200 МГц или 200,5 МГц (200,5 МГц является типовой частотой на других платах nForce2). А это уже около 1%.

Из немногочисленных обзоров был выбран http://www.3dnews.ru/motherboard/nforce2u400-roundup . К сожалению, в нём не указаны реальные частоты. Если отбросить результаты Gigabyte 7NNXP, MSI K7N2 Delta, Acorp 7NFU400, то получится следующая картина. Все платы идут очень кучно и немного отстают от Epox 8RDA+. Причем приблизительно разница получается для Sandra2002 Int MEM - 5%, для Quake III - 3%. На основании этого можно сделать предположение, что на большинстве плат на частоте 200 МГц используются более медленные параметры чипсета, а на Epox 8RDA+ более быстрые. Возможно это совпадение, и объясняется отклонениями частоты шины, но больно хорошо это согласуется с полученными выше результатами. Кроме того, в конференции kv0 пишет, что на Epox 8RDA "увеличение fsb с 166 до 198 МГц приводило к линейному росту производительности без каких-либо скачков".

Таким образом, с большой долей уверенности, можно предположить, что на большинстве материнских плат падение производительности и описанный характер этого падения существует. В том числе и на таких платах как Abit NF7-S rev2.0, Epox 8RDA3+, Gigabyte 7N400. На Epox 8RDA+ падения нет, но для обычного пользователя это скорее минус, т.к. стабильность на высоких частотах снижена.

Итоги.

Материнская плата ASUS A7N8X-X обладает некоторыми "особенностями". Не всегда можно изменить параметр CAS Latency. После частоты шины 182 МГц не работают некоторые коэффициенты умножения процессора. При разных коэффициентах производительность может отличаться. Сильно ругать A7N8X-X нельзя, у других материнских плат "особенностей" тоже хватает.

Наибольшее влияние на производительность памяти оказывают параметры RAS to CAS Latency и CAS Latency. Причем, вопреки все ещё бытующему мнению, RAS to CAS Latency имеет большее значение, чем CAS Latency (это справедливо для DDR SDRAM). Оптимальное значение Active Precharge Delay вычисляется как RAS to CAS Latency + CAS latency + 2. Использование минимальных значений является распространённой ошибкой и вызывает падение производительности до 1%.

На большинстве материнских плат nForce2 на частоте шины 183 МГц наступает значительный провал в производительности. Только где-то на 200 МГц производительность достигает уровня 182 МГц. Это происходит из-за изменения параметров чипсета nForce2 и необходимо для стабильной работы на высоких частотах.

Если на частоте шины 200 МГц установить параметры чипсета от 133 МГц, то можно получить прирост производительности (на ASUS A7N8X-X - порядка 3%) за счет некоторого уменьшения стабильности. Это легко проделать, установив в BIOS частоту шины 133 МГц и, затем, увеличив частоту шины из Windows при помощи утилиты ClockGen до 200 МГц. Но не стоит забывать, что после выхода из режимов энергосбережения параметры чипсета будут восстановлены.

Enot
09/03/2004

У этой статьи есть продолжение "Немного о DDR SDRAM и параметре tRAS ".

  • Распродажа Gigabyte GTX 980 - в два раза дешевле чем другие!
  • Материнская плата - это печатная плата (PCB), которая соединяет процессор, память и все ваши платы расширения вместе для полноценной работы компьютера. При выборе материнской платы необходимо учитывать ее форм-фактор. Форм-фактор - это мировой стандарт, определяющий размер материнской платы, расположение интерфейсов, портов, сокетов, слотов, место крепления к корпусу, разъем для подключения блока питания.

    Форм-фактор

    Большинство материнских плат, сделанные в настоящее время являются ATX, такие материнские платы имеют размеры 30.5 x 24.4 см. Немного меньше (24.4 x 24.4 см) форм-фактор mATX. Материнские платы mini-ITX имеют совсем скромные размеры (17 х 17 см). Материнская плата ATX имеет стандартные разъемы, такие как PS/2 порты, порты USB, параллельный порт, последовательный порт, встроенный в материнскую плату биос и т.д. ATX материнская плата устанавливается в стандартную корпус.

    Чипсет материнской платы

    Как правило, в материнскую плату установлены различные слоты и разъемы. Чипсет - это все микросхемы, имеющиеся на материнской плате, которые обеспечивают взаимодействие всех подсистем компьютера. Основными производителями чипсетов на данный момент являются компании Intel, nVidia и ATI (AMD). В состав чипсета входят северный и южный мост .


    Схема чипсета Intel P67

    Северный мост предназначен для поддержки видеокарты и оперативной памяти и непосредственной работы с процессором. Кроме того, северный мост контролирует частоту системной шины. Однако сегодня часто контроллер встраивается в процессор, это значительно снижает тепловыделение и упрощает функционирование системных контроллеров

    Южный мост обеспечивает функции ввода и вывода, и содержащий контроллеры устройств расположенных на периферии, таких как аудио, жёсткий диск и прочие. Также в нём содержаться контроллеры шин, способствующие подключению периферийных устройств, к примеру, USB или шины PCI.

    Скорость работы компьютера зависит от того, насколько согласовано взаимодействие чипсета и процессора. Для большей эффективности процессор и чипсет должны быть от одного производителя. Кроме того, необходимо учитывать, что чипсет должен соответствовать объему и типу оперативной памяти.

    Сокет процессора

    Soket - это вид разъёма в материнской карте, который будет соответствовать разъёму вашего процессора и предназначенный для его подключения. Именно разъём сокета разделяет материнские платы.

    • Сокеты начинающиеся на AM, FM и S поддерживают процессоры фирмы AMD.
    • Сокеты начинающиеся на LGA имеют поддержку процессоров фирмы Intel.

    Какой именно тип сокета соответствует вашему процессору, вы узнаете из инструкции к самому процессору, а вообще выбор материнской платы происходит одновременно с выбором процессора, их как бы подбирают друг для друга.

    Слоты оперативной памяти

    При выборе материнской платы большое значение имеет тип и частота оперативной памяти. На данный момент используются память DDR3 с частотой 1066, 1333, 1600, 1800 или 2000 МГц, до нее была DDR2, DDR и SDRAM. Память одного типа не удастся подключить к материнской плате, если ее разъемы предназначены для памяти другого типа. Хотя на данный момент существуют модели материнских плат со слотами и для DDR2, и для DDR3. Несмотря на то, что оперативная память подключиться к материнской плате, предназначенной для большей частоты, лучше этого не делать, так как это негативно скажется на работе компьютера. Если в будущем предполагается увеличить объем оперативной памяти, то необходимо выбирать материнскую плату с большим количеством разъемов для нее (максимальное количество – 4).

    PCI слот

    В слот PCI можно подключать карты расширения, такие как звуковая карта, модем, ТВ-тюнеры, сетевая карта, карта беспроводной сети Wi-Fi и т.д. Хотим отметить, что чем больше данных слотов, тем больше дополнительных устройств вы сможете подключить к материнской плате. Наличие двух и более одинаковых PCI-E x16 слотов для подключения видеокарт говорит о возможности их одновременной и параллельной работы.

    В виду того, что современные дополнительные устройства включают в себя системы охлаждения и просто имеют габаритный вид, они могут мешать подключению в соседний слот иного устройства. Поэтому даже если вы не собираетесь подключать к компьютеру кучу внутренних дополнительных плат, всё равно, стоит выбирать материнскую плату с как минимум 1-2 слотами PCI, чтобы вы смогли без проблем подключить даже минимальный набор устройств.

    PCI Express

    Слот PCI Express необходим для подключения PCI-E видеокарты. Некоторые платы, имеющие 2 и более разъема pci-e поддерживают конфигурацию SLI или Crossfire, для подключения нескольких видеокарт одновременно. Следовательно, если необходимо подключить одновременно две или три одинаковых видеокарты, например, для игр или работы с графикой, необходимо выбирать материнскую плату с соответствующим количеством слотов типа PCI Express x16.

    Частота шины

    Частота шины - это общая пропускная способность материнской платы, и чем она выше, тем будет быстрее производительность всей системы. Учтите, что частота шины процессора должна соответствовать частоте шины материнской платы, в противном случае процессор с частотой шины выше, поддерживаемой материнской платой, работать не будет.

    Разъёмы для жёстких дисков

    Самым актуальным на сегодняшний день является SATA разъём для подключения жёстких дисков, который пришёл на смену старому разъёму IDE. В отличие от ИДЕ, САТА имеет более высокую скорость передачи данных. Современные разъёмы SATA 3 поддерживают скорость в 6 Гб/с. Чем больше SATA разъёмов, тем больше жёстких дисков вы сможете подключить к системной плате. Но учтите, что количество жёстких дисков может быть ограничено корпусом системного блока. Поэтому если вы хотите установить более двух винчестеров, то убедитесь, что такая возможность есть в корпусе.

    Несмотря на то, что разъём SATA активно вытесняет IDE, новые модели материнских карт всё равно комплектуют разъёмом IDE. В большей степени это делается для удобства апгрейда, то есть проведя обновление комплектующих компьютера, дабы сохранить всю имеющуюся информацию на старом жёстком диске с IDE разъёмом и не испытывать сложностей с её копированием.

    Если вы покупаете новый компьютер и планируете использовать старый жёсткий диск, то максимум рекомендуем его задействовать как дополнительный винчестер. Лучше всё-таки имеющуюся информацию переписать на новый HDD с SATA подключением, так как старый будет заметно тормозить работу всей системы.

    USB разъёмы


    Обратите внимание на количество USB разъёмов на задней панели материнской карты. Чем их больше, тем соответственно лучше, так как практически все существующие дополнительные устройства имеют именно USB разъём для подключения к компьютеру, а именно: клавиатуры, мышки, флешки, мобильный телефон, Wi-Fi адаптер, принтер, внешний жёсткий диск, модем и т.п. Чтобы задействовать все эти устройства необходимо достаточное количество разъёмов для каждого устройства.

    USB 3.0 - это новый стандарт передачи информации через USB интерфейс, скорость передачи данных достигает до 4.8 Гб/с.

    Звук

    Каждая материнская плата имеет звуковой контроллер. Если вы любитель послушать музыку, то рекомендуем выбирать материнскую плату с большим количеством звуковых каналов.

    • 2.0 – звуковая карта поддерживает стереозвук, две колонки или наушники;
    • 5.1 – звуковая карта поддерживает аудиосистему объёмного звука, а именно 2 передних динамика, 1 центральный канал, 2 задних динамика и сабвуфер;
    • 7.1 – поддержка системы объёмного звука, имеет такую же архитектуру как для работы системы 5.1, только добавляются боковые динамики.

    Если материнская карта имеет поддержку многоканальной аудиосистемы, то вы с лёгкостью сможете построить домашний кинотеатр на основе компьютера.

    Дополнительные функции

    Вентиляторы можно подключить к любой материнской плате, которая имеет разъёмы для вентиляторов (кулеров), для обеспечения надёжного и хорошего охлаждения всех внутренних комплектующих в системном блоке. Рекомендуется наличие нескольких таких разъёмов.

    Ethernet - это контроллер, установленный на материнской плате, с помощью него осуществляется подключение к интернету. Если вы планируете активно пользоваться интернетом, и ваш Интернет-провайдер поддерживает скорость в 1 Гбит/с, то покупайте материнскую плату с поддержкой такой скорости. А вообще, если вы покупаете материнскую плату на довольно длительный промежуток времени, и в ближайшие 3 года не планируете её менять, то лучше сразу брать карту с поддержкой гигабитной сети, учитывая темпы развития технологий.

    W i-F i встроенный модуль, понадобится поэтому если у вас есть WI-FI роутер. Купив такую материнскую плату, вы избавитесь от лишних проводов, но правда вай-фай не сможет порадовать вас высокой скоростью, как Ethernet.

    Bluetooth - весьма полезная штука, так как благодаря блютуз контролеру Вы сможете не только загружать контент с компьютера на свой мобильный телефон, а так же подключить беспроводные мышку и клавиатуру и даже Bluetooth-гарнитуру, тем самым избавившись от проводов.

    RAID контроллер - с ним можно не бояться за сохранность файлов на компьютере в случае поломки винчестера. Для включения этой технологии необходимо установить. как минимум 2 одинаковых жестких диска в режиме зеркала, и все данные с одного накопителя будут автоматически копироваться на другой.

    Твердотельные конденсаторы - это использование более стойких к нагрузке и температуре конденсаторов, содержащих полимер. У них больший срок службы и они лучше переносят высокую температуру. Практически все производители уже перешли на них при изготовлении материнских плат.

    Цифровая система питания - обеспечивает питание процессора и остальной схемы без перепадов и в достаточном объеме. На рынке присутствуют как дешевые цифровые блоки, которые ничем не лучше аналоговых, так и более дорогие и умелые. Понадобится, если у Вас слабый блок питания или некачественная электросеть, и Вы не пользуетесь UPS, или будете разгонять процессор.

    Кнопки для быстрого разгона - позволяют повышать частоту шины или подаваемое напряжение одним нажатием. Будет полезна оверклокерам.

    Защита от статического напряжения - эта проблема кажется несущественной, пока вы зимой не потянитесь к своему любимцу, предварительно сняв свитер. И хотя это происходит так нечасто, все же очень обидно сжечь плату одним неосторожным движением.

    Military Class - это прохождение тестирования платы в условиях повышенной влажности, сухости, холода, жары, перепада температуры и других стресс-тестов. Если материнская плата прошла все эти тесты, значит вывести из строя может разве что разряд молнии. Существую разные классы, отличающиеся набором пройденных испытаний.

    Многобиосность сохранит Вам деньги и нервы после неудачных опытов с BIOS или UEFI. В противном случае, вы получаете нерабочую плату. И для ее восстановления понадобится найти другую рабочую материнскую плату, желательно такого же типа. В многобиосных платах можно просто переключиться на резервную UEFI. В некоторых платах это реализовано как откат до изначального UEFI. Очень пригодится для любителей экспериментов.

    «Разогнанные» порты USB или LAN - это технология, встречающаяся практически на всех материнских платах. Заключается в том, что скорость USB увеличивается только при определенных условиях. А увеличение скорости сети LAN вы заметите только при уменьшении pingа в сетевых играх


    Socket Тип сокета - разъема для установки процессора на материнской плате. Как правило, тип сокета характеризуется количеством ножек и производителем процессора. Разные сокеты соответствуют разным типам процессоров.
    Современные процессоры Intel используют сокет LGA1150 и LGA2011 , процессоры AMD - сокеты AM3+ и FM2+ .
    Количество ядер Число ядер в процессоре.
    Новая технология изготовления процессоров позволяет разместить в одном корпусе более одного ядра. Наличие нескольких ядер значительно увеличивает производительность процессора. Например, в линейке Core 2 Duo используются двухъядерные процессоры, а в модельном ряду Core 2 Quad - четырехъядерные.
    Коэффициент умножения Значение коэффициента умножения процессора, на основании которого производится расчет конечной тактовой частоты процессора.
    Тактовая частота процессора вычисляется как произведение частоты шины (FSB) на коэффициент умножения. Например, частота шины (FSB) составляет 533 Mhz, коэффициент умножения - 4.5, получаем: 533*4.5= 2398,5 Mгц. Это и будет тактовой частотой работы процессора. Почти у всех современных процессоров данный параметр является заблокированным на уровне ядра и не поддается изменению.
    Нужно отметить, что в процессорах Intel Pentium 4, Pentium M, Pentium D, Pentium EE, Xeon, Core и Core 2 используется технология Quad Pumping, которая позволяет передавать четыре блока данных за один такт, при этом эффективная частота шины увеличивается в четыре раза. Для указанных процессоров в поле "Частота шины" приводится эффективная, то есть увеличенная в четыре раза, частота шины. Для получения физической частоты шины нужно эффективную частоту разделить на четыре.
    Линейка процессоров Модельный ряд, или линейка, к которой относится процессор.
    В рамках одной линейки процессоры могут значительно отличаться друг от друга по целому ряду параметров. У каждого производителя существует так называемая бюджетная линейка процессоров. Например, у Intel это Celeron и Pentium а у AMD - Athlon и Phenom . Процессоры этих линеек отличаются от своих более дорогих собратьев отсутствием некоторых функций или меньшим значением параметров. Так, у процессора в бюджетной линейке может отсутствовать или быть значительно уменьшенной кэш-память разных уровней. Бюджетные линейки можно рекомендовать для офисных систем, не требующих большой производительности. Для более ресурсоемких задач (игр, обработки видео и аудио) рекомендуются "старшие" линейки, например, Intel Core i3, Core i5, Core i7, AMD FX, A8, A10 и т.п. Для серверных решений, как правило, используются специализированные линейки процессоров - Opteron , Xeon и прочие. Максимальная рабочая температура Допустимая максимальная температура поверхности процессора, при которой возможна нормальная работа.
    Температура процессора зависит от его загруженности и от качества теплоотвода. В холостом режиме и при нормальном охлаждении температура процессора находится в пределах 25-40°C, при высокой загруженности она может достигать 60-70 градусов.
    Для процессоров с высокой рабочей температурой рекомендуются мощные системы охлаждения. Максимальный объем памяти Максимальный объем памяти (ГБ), который поддерживает процессор. Название графического ядра Название графического ядра процессора. Кроме стандартных нескольких ядер, у процессора может быть еще и ядро, занимающееся исключительно графическими вычислениями, что снижает нагрузку на графический чипсет или видеокарту, и увеличивает производительность. Напряжение на ядре Номинальное напряжение питания ядра процессора.
    Этот параметр указывает напряжение, которое необходимо процессору для работы (измеряется в вольтах). Он характеризует энергопотребление процессора и особенно важен при выборе CPU для мобильной, нестационарной системы.
    Объем кэша L1 Объем кэш-памяти первого уровня.
    Кэш-память первого уровня - это блок высокоскоростной памяти, расположенный прямо на ядре процессора. В него копируются данные, извлеченные из оперативной памяти. Сохранение основных команд позволяет повысить производительность процессора за счет более высокой скорости обработки данных (обработка из кэша быстрее, чем из оперативной памяти). Емкость кэш-памяти первого уровня невелика и исчисляется килобайтами. Обычно "старшие" модели процессоров обладают большим объемом кэша L1.
    Для многоядерных моделей указывается объем кэш-памяти первого уровня для одного ядра.
    Объем кэша L2 Объем кэш-памяти второго уровня.
    Кэш-память второго уровня - это блок высокоскоростной памяти, выполняющий те же функции, что и кэш L1 (см. "Объем кэша L1"), однако имеющий более низкую скорость и больший объем. Если вы выбираете процессор для ресурсоемких задач, то модель с большим объемом кэша L2 будет предпочтительнее.
    Для многоядерных процессоров указывается суммарный объем кэш-памяти второго уровня.
    Объем кэша L3 Объем кэш-памяти третьего уровня.
    Интегрированная кэш-память L3 в сочетании с быстрой системной шиной формирует высокоскоростной канал обмена данными с системной памятью. Как правило, кэш-памятью третьего уровня комплектуются только топовые процессоры и серверные решения. Кэш-памятью третьего уровня обладают, например, такие линейки процессоров, как AMD Opteron, AMD Phenom, AMD Phenom II, Intel Core i3, Intel Core i5, Intel Core i7, Intel Xeon.
    Поддержка 3DNow Поддержка технологии 3DNow!.
    3DNow! - это технология, представляющая собой набор из 21 дополнительной команды. Она предназначена для улучшенной обработки мультимедийных приложений. Эта характеристика относится только к процессорам производства компании AMD.
    Поддержка AMD64/EM64T Поддержка технологии AMD64 или EM64T.
    Процессоры с 64-битной архитектурой могут работать как со старыми 32-битными приложениями, так и с 64-битными, которые становятся в последнее время все более популярными. Примеры линеек с 64-битной архитектурой: AMD Athlon 64, AMD Opteron, Core 2 Duo, Intel Xeon 64 и прочие. Процессоры с поддержкой 64-битной адресации работают с оперативной памятью свыше 4 Гб, что недоступно традиционным 32-битным CPU. Для использования преимуществ 64-битных процессоров необходимо, чтобы ваша операционная система была адаптирована к ним.
    Реализация 64-битных расширений в процессорах AMD называется AMD64, в моделях от Intel - EM64T.
    Поддержка HT Поддержка технологии Hyper-Threading (HT).
    Технология Hyper-Threading, разработанная компанией Intel, позволяет процессору выполнять параллельно два потока команд (или две части программы). Это значительно повышает эффективность выполнения специфических приложений, связанных с аудио- и видеоредактированием, 3D-моделированием и т.п., а также работы в многозадачном режиме. Однако в некоторых приложениях использование этой технологии может приводить к обратному эффекту, поэтому при необходимости ее можно отключить.
    Поддержка Intel vPro Поддержка процессором технологии Intel vPro.
    Технология Intel vPro позволяет удаленно диагностировать состояние компьютера, изолировать его от других компьютеров в сети в случае обнаружения вредоносного ПО, устанавливать обновления и т.д. Причем производить эти действия можно независимо от состояния ОС. Поддержка NX Bit Поддержка технологии NX Bit.
    NX Bit представляет собой технологию, которая может предотвращать исполнение вредоносного кода некоторых видов вирусов. Она поддерживается в операционной системе Windows XP при обязательной установке SP2 и во всех 64-битных операционных системах.
    Поддержка SSE2 Поддержка технологии SSE2.
    Технология SSE2 включает в себя набор команд, разработанных компанией Intel в дополнение к своим предыдущим технологиям SSE и MMX. Эти команды позволяют добиться существенного прироста производительности в приложениях, оптимизированных под SSE2. Данную технологию поддерживают практически все современные модели.
    Поддержка SSE3 Поддержка технологии SSE3.
    SSE3 - технология, представляющая собой набор из 13 новых команд, призванных улучшить производительность процессора в ряде операций потоковой обработки данных.
    Поддержка SSE4 Поддержка технологии SSE4.
    SSE4 - технология, представляющая собой набор из 54 новых команд. Они призваны увеличить производительность процессора в работе с медиаконтентом, в игровых приложениях, задачах трехмерного моделирования.
    Поддержка Virtualization Technology Поддержка Virtualization Technology.
    Virtualization Technology позволяет запускать на одном компьютере несколько операционных систем одновременно. Таким образом, с помощью виртуализации одна компьютерная система может функционировать как несколько виртуальных систем.
    Разблокированный множитель Разблокированный множитель процессора позволяет изменять его тактовую частоту стандартными средствами материнской платы и чипсета. Наличие разблокированного множителя необходимо для разгона ("оверклокинга") процессора. Тепловыделение Величина тепловыделения процессора.
    Тепловыделение - это мощность, которую должна отводить система охлаждения, чтобы обеспечить нормальную работу процессора. Чем больше значение этого параметра, тем сильнее греется процессор при работе.
    Этот показатель важен для оверклокеров: процессор с низким тепловыделением легче охлаждать, и, соответственно, его можно сильнее разогнать.
    Однако следует обратить внимание, что производители процессоров по разному измеряют тепловыделение, поэтому их сравнение корректно только в рамках одного производителя Техпроцесс Техпроцесс - это масштаб технологии, которая определяет размеры полупроводниковых элементов, составляющих основу внутренних цепей процессора (эти цепи состоят из соединенных соответствующим образом между собой транзисторов). Совершенствование технологии и пропорциональное уменьшение размеров транзисторов способствуют улучшению характеристик процессоров. Для сравнения, у ядра Willamette, выполненного по техпроцессу 0.18 мкм - 42 миллиона транзисторов, а у ядра Prescott, техпроцесс 0.09 мкм - 125 миллионов. Частота процессора Тактовая частота процессора.
    Тактовая частота - это количество тактов (операций) процессора в секунду. Тактовая частота процессора пропорциональна частоте шины (FSB, см. "Частота шины"). Как правило, чем выше тактовая частота процессора, тем выше его производительность. Но подобное сравнение уместно только для моделей одной линейки, поскольку, помимо частоты, на производительность процессора влияют такие параметры, как размер кэша второго уровня (L2), наличие и частота кэша третьего уровня (L3), наличие специальных инструкций и другие.
    Частота шины Частота шины данных (Front Side Bus, или FSB). Шина данных - это набор сигнальных линий для передачи информации в процессор и из него.
    Частота шины - это тактовая частота, с которой происходит обмен данными между процессором и системной шиной компьютера.
    Нужно отметить, что в процессорах Intel Pentium 4, Pentium M, Pentium D, Pentium EE, Xeon, Core и Core 2 используется технология Quad Pumping, которая позволяет передавать четыре блока данных за один такт. При этом эффективная частота шины увеличивается в четыре раза. Для указанных процессоров в поле "Частота шины" приводится эффективная, то есть увеличенная в четыре раза, частота шины.
    В процессорах компании AMD Athlon 64 и Opteron использована технология HyperTransport. Она позволяет процессору и оперативной памяти взаимодействовать эффективнее, что положительно сказывается на общей производительности системы.
    Ядро Название ядра в процессоре.
    Ядро - это главная часть центрального процессора (CPU). Оно определяет большинство параметров CPU, прежде всего - тип сокета (гнезда, в которое вставляется процессор), диапазон рабочих частот и частоту работы внутренней шины передачи данных (FSB). Ядро процессора характеризуется следующими параметрами: технологический процесс (см. "Техпроцесс"), объем внутреннего кэша первого и второго уровня (см. "Объем кэша L1", "Объем кэша L2"), напряжение (см. "Напряжение на ядре") и теплоотдача (насколько сильно будет нагреваться процессор, см. "Тепловыделение"). Прежде чем покупать CPU с тем или иным ядром, необходимо удостовериться, что ваша материнская плата сможет работать с таким процессором. В рамках одной линейки могут существовать CPU с разными ядрами. Например, в линейке Intel Core i5 присутствуют процессоры с ядрами Lynnfield, Clarkdale, Arrandale, Sandy Bridge и Ivy Bridge.

    Один из способов разгона процессора компьютера - это повышение частоты шины . Но прежде чем использовать этот метод, нужно узнать базовую частоту шины и исходя из этого показателя определить, стоит ли заниматься разгоном таким способом. Ведь если она слишком высокая, то это может привести к перегреву процессора.

    Вам понадобится

    • - программа CPUID CPU-Z;
    • - программа AIDA64 Extreme Edition;
    • - программка AI Booster.

    Инструкция

    Для определения частоты шины нужно воспользоваться специальными программами. Одна из довольно простых утилит CPUID CPU-Z, к тому же, является абсолютно бесплатной. Скачайте ее из интернета и установите на свой компьютер. Запустите программу.

    После запуска выберите вкладку CPU. В появившемся окне вы сможете увидеть основную информацию о вашем процессоре. В левой нижней части окна есть раздел Clocks. В этом разделе вам нужно найти строку Bus Speed. Значение в этой строке и есть частота работы шины.

    Еще одна программа, с помощью которой можно узнать частоту шины, называется AIDA64 Extreme Edition. В отличие от CPUID CPU-Z, эта программа сможет показать текущую частоту шины и допустимые пределы ее повышения. Приложение платное, но есть бесплатный период использования сроком в один месяц. Скачайте программу из интернета, установите ее на компьютер и запустите. AIDA64 Extreme Edition начнет сканирование системы. После его завершения вы попадете в основное меню.

    В правом окне основного меню будет список устройств. В этом списке выберите «Системная плата». В следующем окне также выберите «Системная плата». Появится окно с информацией о конфигурации вашей системной платы. Информация будет разбита на несколько разделов. Найдите раздел «Свойства шины FSB», в нем - строку «Реальная частота». Значение в этой строке и будет частотой шины.

    Также для определения частоты можно воспользоваться программкой AI Booster. Установите ее, перезагрузите компьютер, после чего программа запустится автоматически, так как она встраивается в автозапуск. В меню приложения нажмите по значку Display tuning panel. Таким образом вы откроете дополнительную панель. Дальше выберите пункт Tuning. Чуть ниже под этим пунктом вы сможете посмотреть частоту шины.

    Для полноценной оптимизации работы компьютера рекомендуют изменять параметры работы центрального процессора и оперативной памяти. Естественно, перед началом этого процесса лучше проверить стабильность этих устройств.


    Вам понадобится

    • - CPU-Z;
    • - Speed Fan.

    Инструкция

    Установите программу CPU-Z и запустите ее. Выясните текущую производительность процессора. Общая частота работы ЦП получается произведением множителя на частоту шины. Чтобы обеспечить максимальный эффект от разгона процессора, необходимо повышать частоту шины.

    Перезагрузите компьютер и откройте меню BIOS. Для этого нажмите клавишу Delete при старте загрузки ПК. Нажмите одновременно кнопки F1 и Ctrl, чтобы открыть меню дополнительных настроек. Для некоторых моделей материнских плат могут потребоваться другие комбинации клавиш.

    Откройте меню, отвечающее за настройку параметров работы оперативной памяти и центрального процессора. Увеличьте частоту шины ЦП. Поднимите напряжение, подаваемое на процессор, изменив значение пункта CPU Voltage. Нажмите кнопку F10, чтобы сохранить настройки и перезагрузить компьютер.

    Воспользуйтесь утилитой CPU-Z для оценки стабильности работы процессора. Откройте панель управления и выберите меню «Система и безопасность». Перейдите к пункту «Администрирование». Кликните по ярлыку «Проверка памяти Windows». Выполните диагностику состояния ОЗУ, перезагрузив компьютер. Если система не выявила сбоев, то повторите вход в меню BIOS.

    Перейдите к пункту, указанному в третьем шаге. Измените показатели таймингов оперативной памяти. Рекомендуют первоначально уменьшать значение задержек на минимальный шаг, т.е. на 0.5-1 пункт. Обязательно немного повысьте напряжение, подаваемое на планки ОЗУ. Сохраните настройки и перезагрузите компьютер.

    Повторяйте циклы ускорения ПК и проверки стабильности центрального процессора и оперативной памяти до тех пор, пока система не выявит ошибок. Постоянно следите за температурой ЦП, используя программу CPU-Z или вспомогательные утилиты, например Speed Fan.

    Центральный процессор компьютера имеет ряд технических характеристик , которые определяют самую главную характеристику любого процессора — его производительность и о значении каждой из них полезно знать. Почему? Чтобы в дальнейшем хорошо ориентироваться в обзорах и тестированиях, а также маркировках ЦП. В данной статье я попытаюсь раскрыть основные технические характеристики процессора в понятном для новичков изложении.

    Основные технические характеристики центрального процессора:

    • Тактовая частота;
    • Разрядность;
    • Кэш-память;
    • Количество ядер;
    • Частота и разрядность системной шины;

    Рассмотрим подробнее данные характеристики

    Тактовая частота

    Тактовая частота — показатель скорости выполнения команд центральным процессором.
    Такт — промежуток времени, необходимый для выполнения элементарной операции.

    В недалеком прошлом тактовую частоту центрального процессора отождествляли непосредственно с его производительностью, то есть чем выше тактовая частота ЦП, тем он производительнее. На практике имеем ситуацию, когда процессоры с разной частотой имеют одинаковую производительность, потому что за один такт могут выполнять разное количество команд (в зависимости от конструкции ядра, пропускной способности шины, кэш-памяти).

    Тактовая частота процессора пропорциональна частоте системной шины (см. ниже ).

    Разрядность

    Разрядность процессора — величина, которая определяет количество информации, которое центральный процессор способен обработать за один такт.

    Например, если разрядность процессора равна 16, это значит, что он способен обработать 16 бит информации за один такт.

    Думаю, всем понятно, что чем выше разрядность процессора, тем большие объемы информации он может обрабатывать.

    Обычно, чем больше разрядность процессора, тем его производительность выше.

    В настоящее время используются 32- и 64-разрядные процессоры. Разрядность процессора не означает, что он обязан выполнять команды с такой же самой разрядностью.

    Кэш-память

    Первым делом ответим на вопрос, что такое кэш-память?

    Кэш-память – это быстродействующая память компьютера, предназначена для временного хранения информации (кода выполняемых программ и данных), необходимых центральному процессору.

    Какие данные хранятся в кэш-памяти?

    Наиболее часто используемые.

    Какое предназначение кэш-памяти?

    Дело в том, что производительность оперативной памяти, сравнительно с производительностью ЦП намного ниже. Получается, что процессор ждет, когда поступят данные от оперативной памяти – что понижает производительность процессора, а значит и производительность всей системы. Кэш-память уменьшает время ожидания процессора, сохраняя в себе данные и код выполняемых программ, к которым наиболее часто обращался процессор (отличие кэш-памяти от оперативной памяти компьютера – скорость работы кэш-памяти в десятки раз выше).

    Кэш-память, как и обычная память, имеет разрядность. Чем выше разрядность кэш-памяти тем с большими объемами данных может она работать.

    Различают кэш-память трех уровней: кэш-память первого (L1), второго (L2) и третьего (L3). Наиболее часто в современных компьютерах применяют первые два уровня.

    Рассмотрим подробнее все три уровня кэш-памяти.

    Кэш-память первого уровня является самой быстрой и самой дорогой памятью.

    Кэш-память первого уровня расположена на одном кристалле с процессором и работает на частоте ЦП (отсюда и наибольшее быстродействие) и используется непосредственно ядром процессора.

    Емкость кэш-памяти первого уровня невелика (в силу дороговизны) и исчисляется килобайтами (обычно не более 128 Кбайт).

    Кэш-память второго уровня — это высокоскоростная память, выполняющая те функции, что и кэш L1. Разница между L1 и L2 в том, что последняя имеет более низкую скорость, но больший объем (от 128 Кбайт до 12 Мбайт), что очень полезно для выполнения ресурсоемких задач.

    Кэш-память третьего уровня расположена на материнской плате. L3 значительно медленнее L1и L2, но быстрее оперативной памяти. Понятно, что объем L3 больше объема L1и L2. Кэш-память третьего уровня встречается в очень мощных компьютерах.

    Количество ядер

    Современные технологии изготовления процессоров позволяют разместить в одном корпусе более одного ядра. Наличие нескольких ядер значительно увеличивает производительность процессора, но это не означает что присутствие n ядер дает увеличение производительности в n раз. Кроме этого, проблема многоядерности процессоров заключается в том, что н а сегодняшний день существует сравнительно немного программ, написанных с учетом наличия у процессора нескольких ядер.

    Главными характеристиками шины являются ее разрядность и частота работы. Частота шины — это тактовая частота, с которой происходит обмен данными между процессором и системной шиной компьютера.

    Естественно, чем выше разрядность и частота системной шины, тем выше производительность процессора.

    Высокая скорость передачи данных шины обеспечивает возможность быстрого получения процессором и устройствами компьютера необходимой информации и команд.

    Частота работы всех современные процессоров в несколько раз превышает частоту системной шины, поэтому процессор работает на столько, на сколько ему это позволяет системная шина. Величина, на которую частота процессора превышает частоту системной шины, называется множителем.