Смотреть что такое "Spdif" в других словарях

29.01.2019

На сегодняшний день существует так много слотов и разъемов, что иногда трудно разобраться с одним из них. Так, часто возникают проблемы с покупкой нового девайса и подключением к нему каких-то дополнительных устройств. Сегодня мы узнаем все о S/PDIF - что это, для чего и зачем.

Понятие

Интересно, что международный стандарт позволяет использовать вариант как S/PDIF, так и S/P-DIF. У него присутствует своя расшифровка, которая дает нам понять, кем был разработан данный стандарт. Sony/Philips Digital Interface Format хранит в себе набор параметров протокола с аппаратной реализацией. Он имеет возможность передавать цифровое звучание от первого аудиоустройства ко второму.

Рассматривая S/PDIF, мы разберемся с его физической и системной частью. Физический параметр дает возможно узнать, каким путем передается сигнал и по каким каналам, а системный - какой протокол используется.

Спецификация

Прежде чем разобраться с областью применения данного интерфейса, поймем, чем же он занимается. В целом данный формат допускает несколько типов кабелей и разъемов. Так миру доступен цифровой S/PDIF, коаксиальный и оптический. Есть под эти все варианты соответствующие адаптеры и переходники. Возможно вместо коаксиального использовать оптический и наоборот. Единственное, что, помимо адаптеров, нужен внешний блок питания.


Прародитель

Разработка этого интерфейса началась с уже имеющегося тогда профессионального стандарта AES/EBU. Шифр впервые стал известным в 1986 году. Тогда над ним работали Общество звукоинженеров и Исправленная версия стала использоваться в 1992 году, после чего перетерпела изменения в 2002 и 2009 годах.

Как обычно, существует некое различие в интерфейсах. Его можно определить с помощью устоявшихся стандартов.

Различие

Если вы ничего не знаете о S/PDIF, что это и для чего нужно, то, скорее всего, никогда не слышали и о AES/EBU. Последний стандарт придумали для форматов DAT и CD, которые кодируются с помощью импульсивно-кодовой модуляции. Интерфейс использует код BMC. Это значит, что передача информации происходит с любым показателем частоты дискретизации, а восстановление частоты проходит через расшифровку данных.


Стандарт AES был представлен тремя модификациями. Все работали с показателем сопротивления 110 Ом, с симметричным подключением, в зависимости от модификаций использовался пары или категории 5. При этом стандарт разъемов также отличался, сначала XLR или D-25, позже RJ-45. Уровень сигнала 2-7 В.

Модуляция оставалась неизменной и проходила через кодирование. Подкодовые данные представлены ASCII ID-текстом. Максимальное расстояние сначала было всего 100 м, позже - 400 м. Разрешающая способность достигла 24 бит.

Перед тем как все узнали о S/PDIF, что это и для чего нужно, появился промежуточный вариант AES3id. Он уже работал с сопротивлением 75 Ом, подключение имел несимметричное, кабель коаксиальный. Формат разъема снова поменялся на BNC, а уровень сигнала опустился до 1 В. Максимальное расстояние достигло отметки 1000 м. Разрешающая способность осталась неизменной - 24 бита.

Этот промежуточный вариант во многом продиктовал спецификацию новинки. Так, обозреваемый стандарт также работал с сопротивлением 75 Ом, имел несимметричное подключение. Кабель был как коаксиальный, так и оптический, в зависимости от типа. Разъем снова поменял формат: RCA или TOSLINK. Уровень сигнала стал наполовину меньше - 0,5 В. Изменились подкодовые данные, которые оснастили технологией защиты от копирования SCMS. Максимальная длина уменьшилась и стала лишь 10 м, а способность 20 бит опционально показывала все те же 24 бита.


Типы

Как мы уже говорили ранее, существует три типа данного стандарта. Есть оптический S/PDIF, цифровой и коаксиальный. Первый TOSLINK получил свое название благодаря разработчику Toshiba. Это оптоволоконный стандарт. Его часто можно встретить в бытовых аудиоустройствах, компьютерных звуковых платах и т. д. Популярным последнее время становятся MiniTOSLINK с форм-фактором 3,5 jack. Их можно встретить в некоторых моделях ноутбуков, у которых выход S/PDIF совмещен с гарнитурой.

Коаксиальный тип имеет сопротивление 75 Ом, присоединяется с помощью интерфейса RCA. Если вам не подходят обычные аудиокабели, которые еще называют тюльпанами, то присмотритесь к коаксиальному стандарту. Чтобы корректно работать, он терминируется с двух сторон, а показатели входного и выходного сопротивления равны 75 Ом.

Цифровое аудио S/PDIF - третий тип, поуровневый (TTL). Стандарт основан на биполярной схеме построения транзисторов и резисторов. Транзисторно-транзисторная логика базируется на двух ступенях, хотя и не всегда. Первая >2,4 В, вторая 0-0,4 В. Выходы этого типа можно найти на звуковых картах.


Есть простое объяснение классификации, чтобы не путаться и нормально разобраться с тем, что это - S/PDIF. Данный цифровой звуковой интерфейс, как мы уже обнаружили, может быть цифровым или оптическим. Если у вас дома размещена хорошая аудиосистема или звуковой центр, его лучше подключать именно через данный тип разъема. Качество звука намного лучше, чем через стандартный формат.

Улучшение связано с тем, что звук, проходя через высокочастотную начинку и собирая все «грязные» импульсы, выводится не через аналоговый формат, а цифровой, который не дает звучанию исказиться. Если же использовать оптический стандарт, то можно забыть и о помехах по общему приводу.

Применение

Обозреваемый стандарт сперва использовался в CD-плеерах. После обнаружили, что его можно применять в качестве соединителя и передатчика звука в других аудиоустройствах. Так, этот интерфейс стал появляться в MiniDisc-плеерах и на звуковых картах для ПК. Некоторые наблюдательные водители могли заметить стандарт и в автомобильном звуке. Особенно это стало находкой для тех, кто устал от беспорядка большого количества кабелей. Теперь пучок проводов легко заменялся одним оптоволоконным кабелем.

S/PDIF можно встретить и в качестве передатчика цифрового потока. Обычно в этом режиме работают DVD-плееры с входом AV-ресивера домашнего кинотеатра. В итоге все новые технологии звучания стали доступны в домашних условиях. Многие пользователи смогли познакомиться с Dolby Digital и Digital Theatre System(DTS).

Из всех вариантов, самым распространенным разъемом стал RCA. Он в паре со стандартом S/PDIF "расположился" на потребительской аудиотехнике. Немного реже применяется оптический тип. Чтобы использовать аудиосистему с активной акустикой, необходимо как раз и обзавестись выходом S/PDIF.

S/PDIF (Sony/Philiрs Digital Interface Format - формат цифрового интерфейса фирм Sony и Philiрs) - цифровой интерфейс для бытовой радиоаппаратуры.

AES/EBU (Audio Engineers Society / European Broadcast Union - общество звукоинженеров / европейское вещательное объединение) - цифровой интерфейс для студийной радиоаппаратуры

Оба интерфейса являются последовательными и используют одинаковый формат сигнала и систему кодирования - самосинхронизирующийся код BMC (Biphase-Mark Code - код с представлением единицы двойным изменением фазы), и могут передавать сигналы в формате PCM разрядностью до 24 бит на частотах дискретизации до 48 кГц.

Каждый отсчет сигнала передается 32-разрядным словом, в котором 20 разрядов используются для передачи отсчета, а 12 - для формирования синхронизирующей преамбулы, передачи дополнительной информации и бита четности. 4 разряда из служебной группы могут использоваться для расширения формата отсчетов до 24 разрядов.

Помимо бита четности, служебная часть слова содержит бит достоверности (Validity), который должен быть нулевым для каждого достоверного отсчета. В случае приема слова с единичным битом Validity либо с нарушением четности в слове приемник трактует весь отсчет как ошибочный и может на выбор либо заменить его предыдущим значением, либо интерполировать на основе нескольких соседних достоверных отсчетов.

Отсчеты, помеченные как недостоверные, могут передавать CD-проигрыватели, DAT-магнитофоны и другие устройства, если при считывании информации с носителя не удалось скорректировать возникшие в процессе чтения ошибки.


S/PDIF пpедставляет собой упpощенный ваpиант AES/EBU и используется в бытовой радиоаппаратуре. Оба интерфейса S/PDIF и AES/EBU являются последовательными и используют одинаковый формат сигнала и систему кодирования - самосинхронизирующийся код BMC (Biphase-Mark Code - код с представлением единицы двойным изменением фазы "бифазная модуляция"), и могут передавать сигналы разрядностью до 24 бит на частотах дискретизации до 48 кГц. Таким образом из звуковых данных и сигнала синхронизации создается поток S/PDIF-данных. Каждый бит звуковых данных представлен временным интервалом, начинающимся и заканчивающимся изменением сигнала. Эти изменения (переходы) хорошо видны на сигнале, где они обозначены стрелками. Бит данных "1" создает дополнительный переход внутри временного интервала. Бит данных "0" создает временной интервал без внутреннего перехода. Таким образом звуковые данные и тактовые импульсы объединяются в единый поток данных.

Звуковые данные и информация субкода объединяются в 32-разрядные субкадры. Каждый субкадр начинается с преамбулы, четырехразрядной синхрогруппы, которая нарушает правила бифазного кодирования. Преамбула действует как сигнал синхронизации, обозначающий начало нового субкадра. За преамбулой следуют четыре бита вспомогательной информации и 20 разрядов звуковой информации. Если передается шестнадцатиразрядная звуковая информация, то дополнительные четыре разряда не используются (заменяются при кодировании нулями). Четырехбитную область дополнительных данных можно использовать для размещения звуковых данных, увеличивая за ее счет полную длину слова аудиоданных до 24 битов. Дополнительные четыре бита (правильность звукового отсчета, бит данных пользователя, статус звукового канала и четность субкадра) завершают субкадр. Субкадры левого и правого звуковых каналов идентифицируются несколько различными преамбулами. В едином потоке битов они передаются поочередно. Из субкадров формируются блоки длиной 192 бита. При частоте дискретизации 44,1 кГц общая скорость цифрового потока составляет 2,8224 миллиона бит в секунду.

Стандартно формат кодирования предназначен для передачи одно- и двух-канального сигнала, однако при использовании служебных разрядов для кодирования номера канала возможна передача многоканального сигнала.
Интерфейс S/PDIF бывает двух видов: коаксиальный и оптический .
Входы и выходы, коаксиального SPDIF выполнены на разъемах типа RCA. Цифровой сигнал передается по обычному соединительному шнуру с соответствующими разъемами. В коаксиальном SPDIF данные передаются в виде электрических импульсов по обычным проводам, которые подвержены всевозможным наводкам. В принимающем устройстве все эти наводки отфильтровываются, однако вероятность потери части данных все равно присутствует.

Оптический SPDIF использует для передачи данных оптический кабель. Его входы и выходы выполнены на разъемах типа Toslink, которые закрываются заглушками, по которым очень легко узнать этот тип интерфейса. Оптический кабель совершенно не реагирует на магнитные поля, поскольку данные передаются в виде световых импульсов. Поэтому считается, что оптический интерфейс передачи цифровых данных гораздо лучше защищен от внешнего воздействия, чем коаксиальный. В спутниковых ресиверах используется именно оптический вид интерфейса S/PDIF.

У некоторых видеокарт на графических процессорах от NVIDIA, есть разъем SPDIF. В этой статья будет рассказано, зачем он нужен, и как его использовать.

Этот маленький разъем, на некоторых видеокартах GeForce, позволяет использовать только один кабель вместо двух, чтобы соединить компьютер с домашним кинотеатром. Если Вы не будете подключать свой компьютер к HDTV или если использование двух разделенных кабелей вас не беспокоит, то лучше прекратить читать эту статью прямо сейчас.

SPDIF (Sony/Philips Digital Interface Format) – это стандарт, используемый для передачи цифрового аудио. Задача этого маленького коннектора очень проста: он направляет цифровое аудио сразу на выход HDMI.

У всех видеокарт есть один или два разъема DVI, и любой разъем DVI может быть преобразован в HDMI при помощи простого переходника (переходник DVI в HDMI).
Проблема состоит в том, что разъем DVI не передает аудиосигнал, только видео, в отличие от HDMI, который может передавать и аудио и видео. И если вы используете переходник DVI в HDMI, вы сможете передать только видео. Аудио должно быть передано другим способом.

Как воспроизвести аудио при соединении компьютера с HDTV через переходник DVI в HDMI? Или использовать аудиосистему, подключенную к компьютеру или подключить компьютер к домашнему кинотеатру через SPDIF кабель и воспроизводить аудио через домашний кинотеатр. Другими словами, подключение будет проходить через два кабеля, одно для видео (переходник DVI-в-HDMI ) и другое для аудио (SPDIF выход от компьютера, к SPDIF входу от ресивера домашнего кинотеатра). См. рисунок 1.

Рисунок 1: Как обычно компьютер соединяется с домашним кинотеатрам hi-def


Если Вы хотите, чтобы Ваш компьютер через HDMI передавал аудио, необходимо вручную подключить SPDIF кабель к звуковой карте (в случае со встроенным звуком, SPDIF разъем находиться на материнской плате), а также к SPDIF разъему на видеокарте GeForce. AMD, в свою очередь, утверждает, что видеокарты на их графических процессорах Radeon уже поддерживают передачу аудио для разъемов DVI/HDMI, и не требуется соединительный SPDIF кабель (аудио данные передаются через шину PCI Express).

Может быть два варианта.
Первый вариант. Вы хотите соединить компьютер с HDTV и хотите, чтобы аудио воспроизводилось с динамиков ТВ. Конечно, у большинства людей, имеющих HDTV, есть и ресивер объемного звука 5.1 или 7.1, то в таком случае необходимо, чтобы аудио шло через ресивер.


Рисунок 2: Первый вариант.

Второй вариант . У вас есть ресивер домашнего кинотеатра или HDTV со встроенным аудио / видео коммутатором, способным отделять аудио, передаваемое через соединение HDMI.

Обычно, дома есть несколько видео-источников. Например, у большинства людей есть два видео-источника: декодер кабельного/спутникового телевидения и DVD/Blu-Ray/HD-DVD плеер. Если вы подключите их на отдельные входы вашего телевизора и подключите их аудио-выходы к ресиверу домашнего кинотеатра, вам придется выполнять эти две задачи каждый раз, когда вы захотите переключаться между ними. Вам необходимо будете выбрать нужный видео-вход на телевизоре, чтобы получить правильное изображение, а также выбрать аудио-вход на ресивере домашнего кинотеатра, чтобы получить правильный звук.

Одно из решений проблемы переключения аудио входов, является SPDIF выход . Этот SPDIF выход затем соединяется со SPDIF входом на ресивере и телевизор автоматически направят к этому выходу корректный аудио-сигнал согласно сделанному вами выбору. В этом случае, выбор делается на телевизоре. Поясним этот вариант на рисунке 3.


Рисунок 3: набор HDTV с SPDIF выходом.


Другим решением является использование ресивера со встроенным переключателем, так что ресивер будет посылать на телевизор нужный видео сигнал, а также правильный звуковой сигнал. В этом случае выбор аудио / видео входа делается ресивером, а телевизор получает только один видеосигнал, который поступает из ресивера. Проиллюстрируем этот случай на рисунке 4.


Рисунок 4: Ресивер домашнего кинотеатра с аудио/видео переключателем.


Как мы уже упоминали, если ваш компьютер не обеспечивает аудио сигнал на выходе HDMI, то вам нужно два кабеля: один кабель для видео сигнала и один кабель для аудио сигнала. Если ваш HDTV (первая вариант ) или ресивер домашнего кинотеатра (второй вариант ) способен извлечь звук из HDMI, то вместо двух кабелей будет только один HDMI кабель, соединяющий компьютер с установкой домашнего кинотеатра.

На первой конфигурации (рис. 3), HDTV получил бы видео от кабеля HDMI и направил бы аудио от кабеля HDMI к ее выходу SPDIF, а на второй конфигурации (рис. 4) ресивер домашнего кинотеатра будет получить аудио от кабеля HDMI и направлять видео на HDTV.

Обратите внимание, что если ваш набор HDTV или ресивер не способен извлекать звук из HDMI для перенаправления его на другой выход, Вам все равно придется использовать два кабеля для подключения ПК к установке домашнего кинотеатра.

Цифровые интерфейсы давно теснят своих аналоговых предков. Аудиосистемы среднего класса в качестве источника сигнала используют звук закодированный в одном из множества стандартов. Это может быть банальный PCM для стереозвука или семейство стандартов Dolby для их многоканальных родственников. Но сегодня мы поговорим не о способах кодирования, но о том, как именно передаётся сигнал. Существует всего два варианта - оптический и по коаксиальному кабелю. Оптика гарантирует полную электрическую развязку, коаксиальный кабель прост в подключении.

Уже лет десять практически каждая материнская плата укомплектована оптическим цифровым выходом S/PDIF (он же TOSLINK). Но если посмотреть на заднюю панель найти его можно не всегда. В чём же подвох? В нежелании производителя устанавливать ещё один разъём на задней панели и удорожать плату установкой оптического модуля или гнезда под коаксиальный кабель. Если открыть документацию на материнскую плату то можно обнаружить типовой набор из четырёх контактов похожий на гнездо для подключения спикера.


На этой же странице нарисована фирменная планка с коаксиальным и оптическим выходами. Иногда ещё бывают оптические входы, но автор статьи о таком только читал в сети. Поиск оригинальной планки может превратиться в нетривиальную задачу - цена на зарубежных аукционах составляет около 10 долларов без учёта доставки. Быстрый поиск по русскоговорящим форумам находит только запросы о её покупке и советы купить вместо неё звуковую карту с соответствующим гнездом.

По спецификации уровень сигнала на материнской плате - это TTL, о нагрузочной способности выхода SPDIFOUT можно только догадываться. Та же документация рекомендует нагрузить его светодиодом с токоограничивающим резистором - это и будет самым дешевым подключением. Попробовать этот вариант первым я не решался по двум причинам - жаль было платы и насущной необходимости куда-то втыкать стандартный оптический кабель. Позже я всё же собрал эмиттерный повторитель на одном транзисторе и подключил светодиод. Интерфейс весело светился красным светодиодом, но приставленный к нему оптический кабель звука не дал. Всё та же документация рекомендовала подобрать сверхъяркий светодиод с длиной волны 660 нанометров. Возможно ни один из использованных светодиодов не подошел.

Следующий этап - подключение рекомендованного оптического модуля TOTX173. Цена и наличие по интернет-магазинам опять не радует - чуть меньше тех же десяти долларов и длительная доставка. Значит пора искать донора. Пробежавшись по домашней свалке электроники, удалось выявить только одну жертву, ей оказалась Playstation 2, подаренная сотрудниками на прошлый день рождения. Рука на вандализм легендарной приставки не поднялась. На региональном интернет-аукционе был выловлен DVD Recorder Samsung за те же сакральные 10 долларов без доставки. Дальше пойдут фотографии.

S/PDIF на жертве выглядел так


Так как поиск по коду на корпусе (T2002H7) ничего не дал, то устройство пришлось включать в разобранном состоянии для того чтобы убедиться что используется питание от пяти вольт и TTL уровень сигнала.


Контактов всего три, общий легко определяется, питание подключено напрямую к подписанному 5в штекеру, остаётся информационный вывод подключенный через резистор номиналом 220 Ом. Вот наш ново обретённый модуль крупным планом.


Осталось подключиться к материнской плате и собрать это всё в виде планки. Общий вывод подключаем к общему, питание к питанию, а SPDIFOUT через резистор 220 Ом к data. Из куска макетной платы и выгоревшей сетевой карты собираем планку для ПК, у меня получилось так.


Устанавливаем в корпус.


С момента сборки прошло уже более двух недель - всё работает отлично. На слух конечно разница находится в пределах данных психологией ощущений. Но если есть акустика понимающая оптику - почему бы не воспользоваться подключением сделанным своими руками. В комментариях было бы интересно услышать мнение о возможной разнице в звучании такого оптического выхода и полученного с звуковой карты среднего ценового диапазона.

Уже после сборки я добрался до ближайшей мастерской по ремонту бытовой техники. Именно там стояло сразу искать донора - у них есть достаточное количество сгоревших DVD плееров, примерно по доллару за плату. Для тех кто захочет повторить конструкцию - это будет полезным.

/ 10
ХудшийЛучший

Интерфейсы медиаплееров

В данной статье я постарался рассказать очень подробно о самых популярных разъемов, которые использованы в медиапелеерах.

USB

USB (англ. Universal Serial Bus - «универсальная последовательная шина», произносится «ю-эс-би») - последовательный интерфейс передачи данных для среднескоростных и низкоскоростных периферийных устройств в вычислительной технике. Символом USB являются четыре геометрические фигуры: большой круг, малый круг, стрелка и квадрат, расположенные на концах древовидной блок-схемы.

Для подключения периферийных устройств к шине USB используется четырёхпроводный кабель, при этом два провода (витая пара) в дифференциальном включении используются для приёма и передачи данных, а два провода - для питания периферийного устройства. Благодаря встроенным линиям питания USB позволяет подключать периферийные устройства без собственного источника питания (максимальная сила тока, потребляемого устройством по линиям питания шины USB, не должна превышать 500 мА).

Основные сведения

Кабель USB состоит из 4 медных проводников - 2 проводника питания и 2 проводника данных в витой паре, и заземленной оплётки (экрана).

Кабели USB ориентированы, то есть имеют физически разные наконечники «к устройству» и «к хосту». Возможна реализация USB устройства без кабеля, со встроенным в корпус наконечником «к хосту». Возможно и неразъёмное встраивание кабеля в устройство, как в мышь (стандарт запрещает это для устройств full и high speed, но производители его нарушают). Существуют (хотя и запрещены стандартом) и пассивные USB удлинители, имеющие разъёмы «от хоста» и «к хосту».

Шина строго ориентирована, имеет понятие «главное устройство» (хост, он же USB контроллер, обычно встроен в микросхему южного моста на материнской плате) и «периферийные устройства». Шина имеет древовидную топологию, поскольку периферийным устройством может быть разветвитель (hub), в свою очередь имеющий несколько нисходящих разъемов «от хоста». Разветвитель - это сложное электронное устройство, пассивных разветвителей не бывает.

Соединение 2 компьютеров - или 2 периферийных устройств - пассивным USB кабелем невозможно. Существуют активные USB кабели для соединения 2 компьютеров, но они включают в себя сложную электронику, эмулирующую Ethernet адаптер, и требуют установки драйверов с обеих сторон.

Устройства могут быть запитаны от шины, но могут и требовать внешний источник питания. Поддерживается и дежурный режим для устройств и разветвителей по команде с шины со снятием основного питания при сохранении дежурного питания и включением по команде с шины.

USB поддерживает «горячее» подключение и отключение устройств. Это достигнуто увеличенной длиной заземляющего контакта разъёма по отношению к сигнальным. При подключении разъёма USB первыми замыкаются заземляющие контакты, потенциалы корпусов двух устройств становятся равны и дальнейшее соединение сигнальных проводников не приводит к перенапряжениям, даже если устройства питаются от разных фаз силовой трёхфазной сети.

На логическом уровне устройство USB поддерживает транзакции приема и передачи данных. Каждый пакет каждой транзакции содержит в себе номер оконечной точки (endpoint) на устройстве. При подключении устройства драйверы в ядре ОС читают с устройства список оконечных точек и создают управляющие структуры данных для общения с каждой оконечной точкой устройства. Совокупность оконечной точки и структур данных в ядре ОС называется каналом (pipe).

Оконечные точки, а значит, и каналы, относятся к одному из 4 классов - поточный (bulk), управляющий (control), изохронный (isoch) и прерывание (interrupt). Низкоскоростные устройства, такие, как мышь, не могут иметь изохронные и поточные каналы.

Управляющий канал предназначен для обмена с устройством короткими пакетами «вопрос-ответ». Любое устройство имеет управляющий канал 0, который позволяет программному обеспечению ОС прочитать краткую информацию об устройстве, в том числе коды производителя и модели, используемые для выбора драйвера, и список других оконечных точек.

Канал прерывания позволяет доставлять короткие пакеты и в том, и в другом направлении, без получения на них ответа/подтверждения, но с гарантией времени доставки - пакет будет доставлен не позже, чем через N миллисекунд. Например, используется в устройствах ввода (клавиатуры/мыши/джойстики).

Изохронный канал позволяет доставлять пакеты без гарантии доставки и без ответов/подтверждений, но с гарантированной скоростью доставки в N пакетов на один период шины (1 КГц у low и full speed, 8 КГц у high speed). Используется для передачи аудио- и видеоинформации.

Поточный канал дает гарантию доставки каждого пакета, поддерживает автоматическую приостановку передачи данных по нежеланию устройства (переполнение или опустошение буфера), но не дает гарантий скорости и задержки доставки. Используется, например, в принтерах и сканерах.

Время шины делится на периоды, в начале периода контроллер передает всей шине пакет «начало периода». Далее в течение периода передаются пакеты прерываний, потом изохронные в требуемом количестве, в оставшееся время в периоде передаются управляющие пакеты и в последнюю очередь поточные.

Активной стороной шины всегда является контроллер, передача пакета данных от устройства к контроллеру реализована как короткий вопрос контроллера и длинный, содержащий данные, ответ устройства. Расписание движения пакетов для каждого периода шины создается совместным усилием аппаратуры контроллера и ПО драйвера, для этого многие контроллеры используют крайне сложный DMA со сложной DMA-программой, формируемой драйвером.

Размер пакета для оконечной точки есть вшитая в таблицу оконечных точек устройства константа, изменению не подлежит. Он выбирается разработчиком устройства из числа тех, что поддерживаются стандартом USB.

Версии спецификации

Предварительные версии

  • USB 0.7 : спецификация выпущена в ноябре 1994 года.
  • USB 0.8 : спецификация выпущена в декабре 1994 года.
  • USB 0.9 : спецификация выпущена в апреле 1995 года.
  • USB 0.99 : спецификация выпущена в августе 1995 года.
  • USB 1.0 Release Candidate : спецификация выпущена в ноябре 1995 года.

USB 1.0

Спецификация выпущена 15 января 1996 года.

Технические характеристики:

  • два режима передачи данных:
    • режим с высокой пропускной способностью (Full-Speed ) - 12 Мбит/с
    • режим с низкой пропускной способностью (Low-Speed ) - 1,5 Мбит/с
  • максимальная длина кабеля для режима с высокой пропускной способностью - 5 м
  • максимальная длина кабеля для режима с низкой пропускной способностью - 3 м
  • максимальное количество подключённых устройств (включая размножители) - 127
  • возможно подключение устройств, работающих в режимах с различной пропускной способностью к одному контроллеру USB
  • напряжение питания для периферийных устройств - 5 В
  • максимальный ток, потребляемый периферийным устройством - 500 мА

USB 1.1

Спецификация выпущена в сентябре 1998 года. Исправлены проблемы и ошибки, обнаруженные в версии 1.0. Первая версия, получившая массовое распространение.

USB 2.0

Спецификация выпущена в апреле 2000 года. USB 2.0 отличается от USB 1.1 введением режима Hi-speed.

Для устройств USB 2.0 регламентировано три режима работы:

  • Low-speed, 10-1500 Кбит/c (используется для интерактивных устройств: клавиатуры, мыши, джойстика)
  • Full-speed, 0,5-12 Мбит/с (аудио-, видеоустройства)
  • Hi-speed, 25-480 Мбит/с (видеоустройства, устройства хранения информации)

Последующие модификации

Последующие модификации к спецификации USB публикуются в рамках Извещений об инженерных изменениях (англ. Engineering Change Notices - ECN). Самые важные из модификаций ECN представлены в наборе спецификаций USB 2.0 (англ. USB 2.0 specification package ), доступном на сайте USB Implementers Forum.

  • Mini-B Connector ECN : извещение выпущено в октябре 2000 года.
  • Errata, начиная с декабря 2000 : извещение выпущено в декабре 2000 года.
  • Pull-up/Pull-down Resistors ECN
  • Errata, начиная с мая 2002 : извещение выпущено в мае 2002 года.
  • Interface Associations ECN : извещение выпущено в мае 2003 года.
    • Были добавлены новые стандарты, позволяющие ассоциировать множество интерфейсов с одной функцией устройства.
  • Rounded Chamfer ECN : извещение выпущено в октябре 2003 года.
  • Unicode ECN : извещение выпущено в феврале 2005 года.
    • Данное ECN специфицирует, что строки закодированы с использованием UTF-16LE.
  • Inter-Chip USB Supplement : извещение выпущено в марте 2006 года.
  • On-The-Go Supplement 1.3 : извещение выпущено в декабре 2006 года.
    • USB On-The-Go делает возможным связь двух USB-устройств друг с другом без отдельного USB-хоста. На практике одно из устройств играет роль хоста для другого.

USB OTG

USB OTG (аббр. от O n-T he-G o) - дальнейшее расширение спецификации USB 2.0, предназначенное для лёгкого соединения периферийных USB-устройств друг с другом без необходимости подключения к ПК. Например, цифровой фотоаппарат можно подключать к фотопринтеру напрямую, если они оба поддерживают стандарт USB OTG. К моделям КПК и коммуникаторов, поддерживающих USB OTG, можно подключать некоторые USB-устройства. Обычно это флэш-накопители, цифровые фотоаппараты, клавиатуры, мыши и другие устройства, не требующие дополнительных драйверов. Этот стандарт возник из-за резко возросшей в последнее время необходимости надёжного соединения различных устройств без использования ПК.

Хотя соединение USB OTG выглядит как одноранговое, на самом деле только создаётся такое ощущение - в действительности устройства сами определяют, какое из них будет мастер-устройством, а какое - подчинённым. Одноранговый интерфейс USB существовать не может.

USB Wireless

USB wireless - технология USB (официальная спецификация доступна с мая 2005 года), позволяющая организовать беспроводную связь с высокой скоростью передачи информации (до 480 Мбит/с на расстоянии 3 метра и до 110 Мбит/с на расстоянии 10 метров).

23 июля 2007 года USB Implementers Forum (USB-IF) объявила о сертификации шести первых потребительских продуктов с поддержкой Wireless USB.

USB 3.0

Окончательная спецификация USB 3.0 появилась в 2008 году.

В спецификации USB 3.0 разъёмы и кабели обновлённого стандарта физически и функционально совместимы с USB 2.0. Кабель USB 2.0 содержит в себе четыре линии - пару для приёма/передачи данных, плюс и ноль питания. В дополнение к ним USB 3.0 добавляет еще четыре линии связи (две витых пары), в результате чего кабель стал гораздо толще. Hовые контакты в разъемах USB 3.0 расположены отдельно от старых на другом контактном ряду. Теперь можно будет с лёгкостью определить принадлежность кабеля к той или иной версии стандарта, просто взглянув на его разъём. Спецификация USB 3.0 повышает максимальную скорость передачи информации до 4,8 Гбит/с - что на порядок больше 480 Мбит/с, которые может обеспечить USB 2.0.

Версия 3.0 может похвастаться не только более высокой скоростью передачи информации, но и увеличенной силой тока с 500 мА до 900 мА. Отныне пользователь может не только подпитывать от одного хаба большее количество устройств, но и сами устройства во многих случаях смогут избавиться от отдельных блоков питания.

Кабели и разъёмы USB

Спецификация 1.0 регламентировала два типа разъёмов: A - на стороне контроллера или концентратора USB и B - на стороне периферийного устройства. Впоследствии были разработаны миниатюрные разъёмы для применения USB в переносных и мобильных устройствах, получившие название Mini-USB. Новая версия миниатюрных разъёмов, называемых Micro-USB, была представлена USB Implementers Forum 4 января 2007 года.

Размеры разъёмов: USB Тип A - 4x12 мм, USB Тип B - 7x8 мм, USB mini A и USB mini B - 2x7 мм.

USB Тип А

USB Тип В

Mini USB Тип A (слева) и

Mini USB Тип B (справа)

Micro USB Тип А

Micro USB тип B

Существуют также разъёмы типа Mini-AB и Micro-AB, с которыми соединяются соответствующие коннекторы как типа A, так и типа B.

USB-A удачно сочетает долговечность и механическую прочность, несмотря на отсутствие винтовой затяжки. Однако уменьшенные варианты разъёмов, имеющие тонкие пластмассовые выступы, высоко выступающие из подложки гнезда, плохо переносят частое смыкание-размыкание и требуют более бережного обращения.

Сигналы USB передаются по двум проводам экранированного четырёхпроводного кабеля.

Здесь GND - цепь «корпуса» для питания периферийных устройств, а VBus - +5 В, также для цепей питания. Данные передаются по проводам D- и D+ дифференциально (состояния 0 и 1 (в терминологии официальной документации diff0 и diff1 соответственно) определяются по разности потенциалов между линиями более 0,2 В и при условии, что на одной из линий (D- в случае diff0 и D+ при diff1) потенциал относительно GND выше 2,8 В. Дифференциальный способ передачи является основным, но не единственным (например, при инициализации устройство сообщает хосту о режиме, поддерживаемом устройством (Full-Speed или Low-Speed), подтягиванием одной из линий данных к V_BUS через резистор 1,5 кОм (D- для режима Low-Speed и D+ для режимов Full-Speed и High-Speed.)

Очень важно, чтобы сигнал в кабеле не затухал. Для этого необходимо определить максимальную длину кабеля по следующей маркировке на кабеле «28 AWG /1P…..». Первые две цифры означают калибр проводников, от него зависит максимальная длина кабеля.
Маркировка AWG и соответствующая ей длина кабеля:

  • 28 = 0,81 м
  • 26 = 1,31 м
  • 24 = 2,08 м
  • 22 = 3,33 м
  • 20 = 5,00 м

Кабели и разъёмы USB 3.0

Совместимость

  • Все разъемы и вилки USB 3.0 Тип А совместимы со всеми USB 2.0 Тип А устройствами.
  • К разъемам USB 3.0 Тип A подходят вилки USB 2.0 и более ранние. А вот вилку USB 3.0 Тип B вставить в USB 2.0 не получится.
  • eSATAp (eSATA/USB) порты также совместимы с USB 2.0 устройствами.

Коннектор USB 3.0 тип А

Коннектор USB 3.0 тип B

Изображения разъёмов USB 3.0

USB Тип А

USB Тип В

USB Тип B micro

USB тип mini B

USB 3.0 Powered-B

Распиновка коннекторов USB 3.0 A -типа

1 VBUS (VCC) Красный

2 D- Белый
3 D+ Зелёный
4 GND Чёрный
5 StdA_SSTX- Синий
6 StdA_SSTX+ Жёлтый
7 GND_DRAIN ЗЕМЛЯ
8 StdA_SSRX- Фиолетовый
9 StdA_SSRX+ Оранжевый
Экран Оплётка Экран коннектора

Расположение контактов на вилке USB 3.0 A-типа

Расположение контактов на розетке USB 3.0 A-типа

Распиновка коннекторов USB 3.0 B -типа

1 VBUS Красный
2 D- Белый
3 D+ Зелёный
4 GND Чёрный
5 StdA_SSTX- Синий
6 StdA_SSTX+ Жёлтый
7 GND_DRAIN ЗЕМЛЯ
8 StdA_SSRX- Фиолетовый
9 StdA_SSRX+ Оранжевый
Shell Оплётка Экран разъёма

Расположение контактов на розетке USB 3.0 B-типа

Распиновка коннекторов USB 3.0 Micro-B

1 VBUS Красный


2 D- Белый
3 D+ Зелёный
4 ID не подключён
5 GND Чёрный
6 StdA_SSTX- Синий
7 StdA_SSTX+ Жёлтый
8 GND_DRAIN ЗЕМЛЯ
9 StdA_SSRX- Фиолетовый
10 StdA_SSRX+ Оранжевый
Shell Оплётка Экран разъёма

Расположение контактов вилки USB 3.0 Micro-B

Также hentai videos существуют разъёмы USB 3.0 Micro ещё двух типов: вилка USB 3.0 Micro-A и розетка USB 3.0 Micro-AB. Визуально отличаются от USB 3.0 Micro-B «прямоугольной» (не срезанной) частью разъёма с USB 2.0 контактами, что позволяет избежать подключения вилки Micro-A в розетку Micro-B, а розетку Micro-AB делает совместимой с обеими вилками.

Розетка Micro-AB будет применяться в мобильных устройствах, имеющих бортовой USB 3.0 host контроллер. Для идентификации режима хост/клиент используется пин 4 (ID) – в вилке Micro-A он замкнут на «землю».

Распиновка коннекторов USB 3.0 Powered-B

Новый разъём USB 3.0 Powered-B спроектирован с использованием двух дополнительных контактов, что позволяет устройствам предоставлять до 1000 мА другому устройству, например адаптеру Wireless USB. Это позволяет избежать необходимости в источнике питания для устройства, подключаемого к Wireless USB адаптеру, делая ещё один шаг к идеальной системе беспроводной связи (без отдельного питания). При обычных проводных подключениях к хосту или хабу эти два дополнительных контакта не используются.

1 VBUS +5V Питание

2 USB D- USB 2.0 данные
3 USB D+
4 GND Земля
8 StdA_SSRX- SuperSpeed приём
9 StdA_SSRX+ SuperSpeed приём
7 GND_DRAIN Земля
5 StdA_SSTX- SuperSpeed передача
6 StdA_SSTX+ SuperSpeed передача
10 DPWR Дополнительное питание на устройство
11 DGND Земля питания устройства

Дополнительные контакты питания розетки USB 3.0 Powered-B

eSATA

eSATA (External SATA) - интерфейс подключения внешних устройств, поддерживающий режим «горячей замены» (англ. Hot-swap ). Был создан несколько позже SATA (в середине 2004).

Основные особенности eSATA:

  • Разъёмы - менее хрупкие, и конструктивно рассчитаны на большее число подключений.
  • Требует для подключения два провода: шину данных и кабель питания. В новых спецификациях планируется отказаться от отдельного кабеля питания для выносных eSATA-устройств.
  • Длина кабеля увеличена до 2 м (по сравнению с 1 метровым у SATA).
  • Средняя практическая скорость передачи данных выше, чем у USB или IEEE 1394.
  • Уменьшены требования к сигнальным напряжениям по сравнению с SATA.

Windows

Для поддержки режима горячей замены нужно включить в BIOS режим AHCI. В случае, если загрузочный диск Windows XP подключен к контроллеру, которому переключают режим с IDE на AHCI, Windows перестанет загружаться - активировать этот режим в BIOS возможно только до установки Windows XP. После включения режима в BIOS необходимо в начале инсталляции Windows XP установить драйвер контроллер AHCI с дискеты «по методу F6».

Можно на установленную Windows XP без AHCI поставить AHCI драйвер вручную (выбором inf-файла), после этого перезагрузиться в BIOS и выставить SATA mode режим во вкл. ("ON ").

Linux

Практически все дистрибутивы поддерживают eSATA без каких либо настроек. Для поддержки ядро должно быть сконфигурировано с поддержкой ACPI.

Power eSATA (eSATAp)

Изначально eSATA передаёт только данные. Для питания должен использоваться отдельный кабель. Компания MicroStar создала новый вид eSATA-разъёма, совместив eSATA (для данных) с USB (для питания). Новый вид разъёма имеет название Power eSATA.

HDMI

High-Definition Multimedia Interface (HDMI) - интерфейс для мультимедиа высокой чёткости, позволяющий передавать цифровые видеоданные высокого разрешения и многоканальные цифровые аудиосигналы с защитой от копирования (англ. H igh Bandwidth D igital C opy P rotection , HDCP).

Разъём HDMI обеспечивает цифровое DVI-соединение нескольких устройств с помощью соответствующих кабелей. Основное различие между HDMI и DVI состоит в том, что разъём HDMI меньше по размеру, а также поддерживает передачу многоканальных цифровых аудиосигналов. Является современной (на 2009 год) заменой аналоговых стандартов подключения, таких как SCART или RCA.

Основателями HDMI являются компании Hitachi, Matsushita Electric Industrial (ныне Panasonic), Philips, Silicon Image, Sony, Thomson (RCA) и Toshiba.

Дата выпуска

Описание

Декабрь 2002

    Максимальная пропускная способность интерфейса по одному проводу 4,9 Гбит/с. Поддержка видео до 165 Мпикселей/сек (1080p @ 60 Гц или UXGA) и 8-канального звука (192 кГц/24 бит).

    Добавлена поддержка защиты звука, требуемой для проигрывания DVD-Audio.

Август 2005

    Добавлена поддержка передачи однобитового аудиосигнала, такого, как Super Audio CD DSD;

    Разработан HDMI-разъём типа A с полной поддержкой всех форматов для PC-источников и дисплеев;

    Добавлена возможность для PC-источников использовать родное цветовое пространство RGB при сохранении поддержки YCbCr CE;

    Установлено требование для дисплеев с HDMI 1.2 и более поздних версий поддерживать будущие низковольтные (т.е., связанные по переменному току) источники, например, основанные на базе технологии ввода/вывода PCI Express.

Декабрь 2005

22 июня 2006

    Поднята частота синхронизации с 165 до 340 МГц, что позволяет увеличить пропускную способность интерфейса по одному проводу с 4,95 Гбит/с до 10,2 Гбит/с;

    Добавлена поддержка «глубокого цвета» (deep color, 30-, 36-, 48-битный цвет, 10, 12 или 16 бит на каждый компонент RGB) в высоких разрешениях, вместо поддержки только 24-битного цвета у предыдущей версии;

    Поддержка стандарта цветопередачи xvYCC;

    Реализована автоматическая синхронизация видео- и аудиосигнала;

    Добавлена поддержка новых форматов цифрового звука Dolby HD и DTS-HD;

    Разработан новый мини-разъём для портативных устройств - таких, как камеры;

    1.3b Управление бытовой электроникой.

    Добавлена поддержка разрешения 4K х 2К (3840х2160 при 24/25/30 Гц и 4096х2160 при 24 Гц);

    Реализована возможность создания Fast Ethernet-соединения (100 Мбит/с) (HDMI Ethernet Channel, HEC);

    Реализована технология реверсивного звукового канала (ARC);

    Разработан новый интерфейсный разъём для миниатюрных устройств - miniHDMI.

    Поддержка 3D-изображения.

4 марта 2010

    Улучшена поддержка 3D-изображения

Новые обязательные режимы Side-by-Side и Top-and-Bottom для вещательного контента, в дополнение к режимам, имеющимся в спецификации 1.4. С учётом этих двух обязательных форматов, спецификация HDMI версии 1.4a обеспечивает уровень совместимости устройств, предназначеных для доставки 3D-контента через соединение HDMI.

Применение 3D-форматов: Дисплеи - должны поддерживать все обязательные форматы.
Коммутаторы, хабы, и т.п. - должны быть в состоянии пропускать все обязательные форматы.
Источники (Blu-ray плееры, игровые приставки, ТВ-тюнеры) - должны поддерживать, по крайней мере, один обязательный формат.

Характеристики

  • HDMI имеет пропускную способность в пределах от 4,9 до 10,2 Гбит/с.
  • Длина стандартного кабеля может достигать 10 метров, также возможно увеличение длины до 20-35 метров и более с применением как внешних усилителей-повторителей, так и вмонтированных сразу в кабель. Некоторые производители устанавливают ферритовые кольца в начале и в конце кабеля для защиты от помех. Особое внимание нужно уделить тому, что усилители (репитеры, эквалайзеры) стоит ставить не на выходе источника сигнала, а именно на входе у панели или телевизора.
  • Поддерживает управляющие протоколы CEC и европейский AV.link

Устройство кабеля

HDMI-кабель состоит из следующих частей:

  1. Внешняя оболочка.
  2. Экранирующая оплётка из проволок с дополнительной медной неизолированной жилой для пайки.
  3. Экран из алюминиевой фольги.
  4. Полипропиленовая оболочка.
  5. Экранированые витые пары пятой категории с волновым сопротивлением 100 Ом для сигнала синхронизации, и сигналов трех основных цветов. Экран каждой витой пары имеет внешнюю изоляцию и проволоку для пайки.
  6. Неэкранированная витая пара для сигналов SDA SCL.
  7. Отдельно идущие проводники для питания и управляющих сигналов.

Качество кабеля HDMI, с точки зрения передачи сигнала, напрямую связано с двумя параметрами: толщиной (не кабеля в целом, а непосредственно проводников внутри него), а также материалом этих самых проводников.

Как известно, сопротивление провода тем ниже, чем больше его толщина. Наиболее четко маркировки толщины приняты в США - в единицах AWG, American Wire Gauge (дословно - американский стандарт толщины кабеля). Чем меньше это значение, тем больше сечение/площадь, и тем лучше характеристики. Самый толстый кабель HDMI из всех, которые нам встречались - 22 AWG, самый тонкий - 30 AWG. Разумный минимум для дома - 28 AWG, но при длине не более трех метров. Надо длиннее? Тогда нацеливайтесь на 24 AWG и толще. Подобный кабель (при условии, что он качественный сам по себе) может использоваться для корректной передачи цифрового видеосигнала на расстояние до 10 метров.

В чем выражается «несостоятельность» тонкого провода? На изображении появляется так называемый снег (белая рябь). Также может снижаться яркость. Оградиться от помех поможет ферритовое кольцо и металлизированная оплетка, но проблемы подбора кабеля с правильной толщиной проводников, исходя из необходимой длины, эти средства не снимают.

Важно помнить, что максимальное разрешение видеопотока напрямую увязано с длиной и толщиной кабеля HDMI. Например, потенциала провода 28 AWG будет вполне достаточно для передачи цифрового сигнала стандартного разрешения (условно, DVD-Video) на расстояние до 10 метров. Однако поток 1080p на то же расстояние и по тому же проводу без потерь провести не удастся. В таких ситуациях советуем использовать кабель HDMI 24 AWG. Если же речь идет о «трассе» 15 метров и более, да еще для сигнала 1080p, то потребуется специализированное усилительное устройство - одно или несколько. О этом - чуть ниже.

Техническая информация

Ниже приведена схема интерфейса HDMI.

Контакт 1 - TMDS Data2+
Контакт 2 - TMDS Data2 Shield
Контакт 3 - TMDS Data2-
Контакт 4 - TMDS Data1+
Контакт 5 - TMDS Data1 Shield
Контакт 6 - TMDS Data1-
Контакт 7 - TMDS Data0+
Контакт 8 - TMDS Data0 Shield
Контакт 9 - TMDS Data0-
Контакт 10 - TMDS Clock+
Контакт 11 - TMDS Clock Shield
Контакт 12 - TMDS Clock-
Контакт 13 - CEC
Контакт 14 -Reserved (N.C. on device)
Контакт 15 - SCL
Контакт 16 - SDA
Контакт 17 - DDC/CEC Ground
Контакт 18 - +5 V Power
Контакт 19 - Hot Plug Detect
  • TMDS (Transition-Minimized Differential Signaling). Технология высокоскоростной передачи цифровых потоков, используемая в интерфейсах HDMI и DVI. Использует три канала, передающие потоки аудио/видео и дополнительных данных, с пропускной способностью до 3,4 Гбит/с на канал.
  • CEC (Consumer Electronics Control). Позволяет передавать команды и управляющие сигналы между участниками связи. Функции CEC встраиваются по желанию производителя. Если все участники связи будут поддерживать HDMI CEC, то вы сможете, например, посылать команды с пульта ДУ всей подключённой технике. Среди команд есть включение/выключение, воспроизведение, переход в режим ожидания, запись и другие.
  • SCL (Serial Data Clock). Отвечает за синхронизацию передачи данных.
  • SDA (Serial Data Access). Передаёт данные.
  • DDC (Display Data Channel). Позволяет передавать спецификации дисплея, такие, как название производителя, номер модели, поддерживаемые форматы и разрешения и т.д.

Поддержка форматов

Сегодня поддерживаются все основные форматы видео, включая PAL, NTSC, ATSC и другие. Разрешение видео возможно до 1440p или 2560x1440 в прогрессивном формате (у Blu-ray и HD-DVD оно составляет, максимум, 1080p). Поддерживается глубина цвета до 48 бит (более 280 трлн. цветов) с частотой обновления до 120 Гц.

Поддерживаемые форматы звука включают.

  • Сжатый звук. Dolby Digital, DTS и т.д.
  • Многоканальный звук. SACD, DVD Audio.
  • Несжатый звук (PCM). До 8 каналов с частотой дискретизации до 192 кГц при 24 битах.
  • Сжатый звук без потери качества. Недавно добавлена поддержка Dolby TrueHD и DTS-HD Master Audio.

Защита контента (HDCP)

Для интерфейса HDMI была лицензирована встроенная схема защиты цифрового контента High-Bandwidth Digital Content Protection (HDCP), которая была создана компанией Intel и некоторыми другими для борьбы с пиратством. Технология HDCP должна присутствовать на HD-ресиверах или плеерах/видеомагнитофонах DVD/HD-DVD/Blu-ray, которые используют HDMI.

Ресиверы HDMI

Если вы следите за развитием "домашних кинотеатров", то наверняка знаете, что сегодня ресивер аудио/видео-потоков должен обладать поддержкой HDMI. Современные ресиверы, как правило, обладают входами и выходами HDMI и поддерживают следующие функции.

  1. Многоканальный звук и видео . HDMI-ресивер позволяет подключить одним HDMI-кабелем источник потоков аудио/видео (плеер HD-дисков или приёмник кабельного HDTV) к своему входу, а вторым HDMI-кабелем - HDTV-телевизор к своему выходу. В результате ресивер будет передавать цифровой сигнал видео с плеера HD-дисков/приставки кабельного HDTV на HDTV-телевизор, а многоканальный звук пропускать через усилитель и подавать на подключённую акустику. Если аудио/видео-ресивер не поддерживает HDMI, то вам придётся использовать отдельный кабель (цифровой оптический или коаксиальный) для передачи звука с плеера/приставки на вход ресивера. Разницы в качестве между HDMI и отдельным цифровым кабелем для передачи звука нет, но зачем терпеть в системе ещё один кабель?
    В принципе, преимущества подобной конфигурации, когда вы используете плеер с выходом HDMI, не слишком велики. Но по мере добавления HDMI-компонентов преимущества становятся более весомыми. А именно...
  2. Коммутация HDMI . Большинство HDMI-ресиверов оснащены двумя или тремя входами HDMI, что позволяет подключать к ним несколько источников HDMI-аудио/видео. А HDTV-дисплей соединяется с HDMI-ресивером всего одним кабелем. Вы можете переключать на ресивере источник видео, что намного удобнее, чем перетыкать HDMI-кабели сзади телевизора или на HD-источнике. Эта функция будет становиться всё важнее по мере появления в вашем доме техники с поддержкой HDMI.
  3. Аналогово-цифровое преобразование видео и деинтерлейсинг . Ранние версии HDMI-ресиверов сохраняли цифровые и аналоговые сигналы в том виде, в каком они поступили, что требовало не только цифрового, но и аналогового подключения HDTV-телевизора к ресиверу. Но многие современные HDMI-ресиверы научились преобразовывать входящие аналоговые аудио/видео-сигналы (скажем, через композитный вход или S-Video) в цифровой вид, что позволило передавать на телевизор любые потоки через единственный кабель HDMI. Кроме аналогово-цифрового преобразования, многие ресиверы выполняют ещё и деинтерлейсинг видео (с 480i на 480p). Тоже весьма полезная функция, поскольку многие старые HDTV-телевизоры не поддерживают сигналы 480i через вход HDMI. Некоторые современные ресиверы могут преобразовывать сигналы 480i в форматы 720p, 1080i или 1080p, что помогает улучшить качество картинки со старых источников видео на новых HDTV-телевизорах.

Совместимость HD-DVD/Blu-Ray

Очень важной особенностью интерфейса HDMI является то, что плееры HD-DVD и Blu-ray будут передавать картинку в полном разрешении 1080p только через выход HDMI. Подобный шаг является результатом усилий индустрии по защите от пиратства. В отличие от других аудио/видео-интерфейсов, HDMI для передачи в полном разрешении требует обязательной защиты HDCP. Если вы будете использовать любой другой интерфейс, например, компонентное видео, то сигнал видео будет искусственно ухудшен до качества DVD или даже ещё хуже.

Увеличенная пропускная способность интерфейса HDMI 1.3 как нельзя кстати пригодится новым технологиям, которые используются HD-DVD/Blu-ray. Сюда можно отнести увеличенную глубину цвета, которая позволит выводить до 69 млрд. оттенков (глубина 30-36 бит). HDMI 1.2 может передавать картинку только с 16,7 млн. оттенков (глубина 24 бита). Кроме того, HDMI 1.3 поддерживает звуковые форматы следующего поколения Dolby TrueHD и DTS HD Master Audio, которые используют сжатие без потерь с количеством каналов до восьми (96 кГц, 24 бита, до 18 Мбит/с). Все ресиверы без поддержки HDMI 1.3 смогут воспроизвести фильм со "старыми" форматами звука DTS и Dolby Digital.

Все новые возможности рано или поздно улучшат наслаждение домашним кинотеатром, но есть область, в которой ситуация с HDMI пока ещё не очень понятна. Мы имеем в виду запись видео. Данные проходят через HDMI в несжатом виде, и основная функция HDCP заключается в защите несжатых данных от копирования. Поэтому записать информацию через HDMI пока не получится. Посмотрим, как эта проблема решится в будущем.

Коммутационное оборудование

Говоря о коммутационном HDMI-оборудовании, мы подразумеваем не бытовую электронику, а специализированные устройства для организации схем доставки сигнала нужной конфигурации. Как правило, это небольшие «коробочки» - всевозможные сплиттеры, повторители, сумматоры, коммутаторы. Наибольшее доверие покупателей в данном направлении завоевали такие бренды, как Kramer, Key Digital, Gefen и Dune.

Переходники

Переходники - это простейшие из упоминаемых в этой статье коммутационные элементы. Такого рода соединители не имеют внутри себя никакой электронной «начинки» и служат всего лишь для передачи сигнала между аппаратами совместимыми, но обладающими входами разного типа. Наиболее часто используются переходники HDMI-DVI, чуть реже Y/Pb/Pr-DVI. Все они выпускаются как в виде кабелей с соответствующими разъемами на концах, так и в виде компактных насадок. Напомним, что при использовании переходника с HDMI на DVI пропадает возможность передавать вместе в видеосигналом сопутствующий аудиопоток. В этом случае стоит позаботиться о выводе аудио отдельным кабелем.

Использование простейших переходников актуально при необходимости подключения источника с аналоговым RGB- или компонентным (Y/Pb/Pr) выходом к приемнику (чаще - компьютерному монитору, реже - проектору или ТВ) с DVI-I входом, который может принимать как цифровой, так и аналоговый видеосигнал.

Существуют также переходники HDMI-HDMI. Для чего? Как известно, серийно выпускаемые HDMI-кабели имеют определенный набор фиксированных длин и не могут быть перепаяны в домашних условиях. Для получения трассы любой нестандартной длины приходится составлять ее из нескольких готовых проводов, объединяя их с помощью таких вот связующих переходников. Но помните, что в них нет усиливающих сигнал элементов, поэтому adult anime достичь больших длин простым наращиванием кабеля нельзя. Также не следует забывать и об известном любому профессиональному инсталлятору принципу: качество сигнала тем выше, чем меньше соединений используется для его передачи.

Конверторы (преобразователи)

Данный тип устройств позволяет преобразовывать поток одного формата в другой. Основная задача конвертора - обеспечить совместимость оборудования, если напрямую друг к другу аппараты подключить не удается. Как правило, это небольшие устройства с соответствующими электронными схемами и питанием от электросети. Не путайте конвертор с простейшим механическим переходником, чьи «способности» сводятся к передаче сигнала с контактов разъема одного типа на контакты разъема другого типа. Так вот. Например, конвертор HDMI-DVI открывает возможность совместного использования новейших видеоисточников (Blu-ray, HD DVD) c мониторами/телевизорами прошлого поколения - имеющими цифровой вход (обычно DVI), но не поддерживающими технологию защиты HDCP. Установив конвертор «в разрыв» между источником и ТВ, можно получить на экране полноценное изображение высокого разрешения. Секрет прост: роль приемника идентификационного сигнала HDCP выполняет сам конвертор, отправляя на ТВ «очищенный» видеопоток, с которым тот уже прекрасно справляется. Кто-то скажет, что конверторы - лазейка для пиратов, желающих скопировать «по цифре» защищенный HD-контент. Формально - да. Но на практике… Производители контрафакта давно освоили более эффективные и быстрые способы копирования, нежели перезапись в реальном времени с источника на рекордер. Рядовым же пользователям конверторы могут оказать неоценимую услугу в стремлении использовать честно купленное оборудование и записи в полной мере. В частности, игровую консоль Sony PS3 (PlayStation 3) при помощи конвертора можно подключить к любому компьютерному монитору с входом DVI, сохранив качество видеоряда и его разрешение в первозданном виде. Пригодится конвертор и для цифрового ресивера НТВ+ HD. Как известно, этот терминал производства Thomson (по состоянию на февраль 2008) выдает видео высокого разрешения только по HDMI, c аналоговых выходов «картинка» получается самая обычная, стандартного разрешения. Но новейшими плоскопанельными дисплеями с входом HDMI с HDCP обзавелись далеко не все, а за комплект спутникового оборудования уже заплачены деньги. Что делать? Использовать конвертор HDMI-Component Video. В этом случае можно без проблем смотреть HD-трансляции НТВ+ на телевизоре, оснащенном только лишь компонентным входом (с поддержкой 1080, разумеется).

Усилители и повторители

Для решения проблемы затухания сигнала при передаче его на большие расстояния используется специальное электронное оборудование, известное как усилители (amplifiers) и повторители (они же репитеры, repeaters).
Оба типа устройств пропускают сквозь себя сигнал и усиливают его. Как правильно, такие устройства имеют один вход и один выход. Разница между повторителями и усилителями состоит в том, что первые предназначены для каскадной передачи (в длинной цепочке может быть использовано множество таких аппаратов) сигнала на очень большие расстояния. Вторые в каскадах обычно не используются, но при этом обеспечивают большее усиление, что актуально для разовой поддержки нужного уровня сигнала в рамках трассы.

Например, для передачи потока 1080p по HDMI-кабелю длиной 20 метров целесообразно использовать как раз усилитель, в то время как на большее расстояние (скажем, на 60-80 м) - несколько повторителей через равные расстояния. В обоих случаях область применения таких устройств весьма широка: от домашних инсталляций (дабы, к примеру, без потерь передать сигнал HDMI от установленной рядом с диваном аппаратуры до висящего под потолком проектора) до коммерческих информационных систем в бизнес-центрах и магазинах.

При установке усилителя крайне важно обращать внимание на последовательность подключения цепи. Обычно он ставится перед приемником (телевизором, проектором и т. д.), а не после источника (плеера, DVD-ресивера и пр.). Этот момент является для многих не очевидным и нередко приводит к «необъяснимым» нарушениям в функционировании видеотракта.

Переключатели (switchers)

Что делать, если в вашем доме уже есть несколько источников высококачественного цифрового видеосигнала с выходом HDMI/DVI, а телевизор имеет всего один, в лучшем случае - два входа HDMI-входа? Для решения такой проблемы существуют устройства-переключатели, они же свитчеры (switcher), имеющие несколько входов (3, 4, 5 и более) и один выход. Как нетрудно догадаться, аппараты данного типа позволяют подключить к вашему ТВ или проектору больше устройств, чем допускает коммутационная панель телевизора (или проектора, не важно). Отображаться будет сигнал с одного из них на выбор.

Для обозначения конфигурации свитчера используется маркировка Nx1, где N - количество коммутируемых входов. Например, 3×1 подразумевает наличие 3 входов и одного выхода.

При покупке коммутатора необходимо убедиться, что он соответствует следующим требованиям: поддерживает протокол защиты данных HDCP (без этого вы не сможете смотреть HD-Video с лицензионных дисков) и функцию автоматического выбора активного входа. Крайне приветствуется наличие пульта дистанционного управления в дополнение к кнопкам на корпусе, а также поддержка HDMI v1.3.

P. S. Если вы собираетесь обзаводиться компонентным домашним кинотеатром, то в покупке отдельного HDMI-свитчера не будет нужды - им, скорее всего, будет оснащен AV-ресивер нового поколения.

Разветвители (сплиттеры, splitters)

Коммутаторы данного типа востребованы прежде всего в тех инсталляциях, где требуется передать HDMI-сигнал с одного источника одновременно на несколько устройств отображения. Прежде всего это демо-залы магазинов электроники (качественная демонстрация одного и того же изображения на всех экспонируемых ТВ), торговые центры (системы централизованного отображения справочной информации и рекламы), концертные площадки и клубы.

Требования к разветвителю формально те же, что и к переключателю. За исключением пульта - его у разветвителя не может быть в принципе, потому что такие устройства являются неуправляемыми: сигнал со входа направляется сразу на все выходы (их может быть 2-3 и более). Но есть и практические моменты, которые также стоит учитывать. Во-первых, убедитесь при покупке, что и информация HDCP подается на все выходы разветвителя, а не на один - бывает и такое… Во-вторых - моделей с HDMI v1.3 по состоянию на февраль 2008 было представлено очень мало. Стоит упомянуть, что во все приличные сплиттеры уже встроен усилитель сигнала, который зачастую оказывается мощнее, чем в свитчерах. Маркируются сплиттеры обычно как 1xN, где N - число параллельно работающих выходов.

Гибридные устройства

Гибридные устройства - ничто иное, как совмещение функций переключателя и разветвителя в одном блоке. Такие аппараты обычно маркируются как NxK. N - количество входов, K- выходов. Так, 2×4 - это переключатель на 2 входа и разветвитель на 4 выхода. Иными словами, такой коммутатор позволяет передавать сигнал с любого из двух источников (выбирается с помощью пульта ДУ или кнопки на корпусе) одновременно на 4 устройства отображения.

Матрицы (matrix)

Известным ограничением всех приведенных ранее типов HDMI-коммутаторов является то, что сколько бы в них ни было входов и выходов, на выходе всегда одна и та же картинка на всех устройствах отображения, подключенных к этим аппаратам. Однако этого бывает недостаточно. Наиболее ярким примером такой ситуации является часть системы «умный дом» - распределенное отображение видео. Идея состоит в использовании общей стойки с аудио-видеооборудованием для «раздачи» сигналов на несколько комнат. Среди источников могут быть два HD-проигрывателя (BD и HD DVD), спутниковый ресивер и игровая приставка. С помощью HDMI-матрицы можно направить поток с каждого источника в определенную комнату на выбор. При необходимости комнаты или источники легко меняются местами. Плюс, сигнал с одного источника может выводиться на экран ТВ сразу в нескольких помещениях. Как говорится - кручу, как хочу. Самые «навороченные» из существующих HDMI-матриц имеют формат 4×4 (4 входа и 4 выхода, произвольно коммутируемые). Они позволяют делать все то, что описано выше. Также встречаются модели 2×4 и 4×2.

Помимо «умного дома», HDMI-матрицы могут быть весьма полезными в шоу-румах торговых компаний или крупных офисах.

Заканчивая разговор об HDMI коммутаторах, хотелось бы дать один совет: не покупайте коммутационное оборудование «впритык», с расчетом только на уже существующую конфигурацию. Небольшой запас «на вырост» убережет в будущем от значительных трат, связанных с покупкой нового оборудования.

Видео АЦП/ЦАП

АЦП - аналого-цифровой (и наоборот) преобразователь. Нужны такие устройства для интеграции старых аналоговых источников (например, видеомагнитофона) в сеть, где все компоненты «общаются» по HDMI. Либо наоборот - подключить цифровой выход источника к аналоговому входу устройства отображения. Вдобавок, блоки видео АЦП производят не только конвертацию, но и масштабирование, а некоторые выполняют еще и функцию свитчера.

Во многие AV-ресиверы нового поколения (которые с поддержкой HDMI v1.3) подобные АЦП для любых аналоговых видеосигналов уже втсроены.

Коммерческое применение

Если судить по выставкам электроники за последние 1-2 года, то все большую популярность набирает подход под названием «digital signage» в самой последней его модификации - HD digital signage. В рамках такого подхода в демонстрационных или рекламных целях используются специализированные HD-демонстраторы (плееры со специальными функциями), вся коммутация осуществляется только по HDMI - напрямую или при помощи специального оборудования, описанного выше. В силу известных причин (в частности, из-за ограниченного ресурса работы), в HD демонстраторах никогда не используются оптические приводы, вся информация хранится в NAS - специализированных сетевых накопителях данных. Крайне важной особенностью этого подхода является наличие специального серверного программного обеспечения для удаленного управления всей информационной сетью. К сожалению, в области демонстрационных систем HD пока все только начинается.

LAN (RJ-45)

На 99,9% плееров Вы найдете так называемый разъем RJ-45, который предназначен для связи медиаплеера с компьютером через кабель под названием "Витая пара", по которому Вы можете смотреть видеофайлы по сети либо, предварительно скопировав данные на ЖД, установленный в плеер, смотреть с него (лично я так и делаю:-) ). Рассмотрим все особенности и кабеля, и сетевого соединения ниже.

Registered jack (RJ, читается «ар-джей») - это стандартизированный физический интерфейс, используемый для соединения телекоммуникационного оборудования. Стандартные варианты этого разъёма называются RJ11, RJ14, RJ25, RJ45 и так далее.

Витая пара (англ. twisted pair ) - вид кабеля связи, представляет собой одну или несколько пар изолированных проводников, скрученных между собой (с небольшим числом витков на единицу длины), покрытых пластиковой оболочкой. Свивание проводников производится с целью повышения степени связи между собой проводников одной пары (электромагнитная помеха одинаково влияет на оба провода пары) и последующего уменьшения электромагнитных помех от внешних источников, а также взаимных наводок при передаче дифференциальных сигналов. Для снижения связи отдельных пар кабеля (периодического сближения проводников различных пар) в кабелях UTP категории 5 и выше провода пары свиваются с различным шагом. Витая пара - один из компонентов современных структурированных кабельных систем. Используется в телекоммуникациях и в компьютерных сетях в качестве физической среды передачи сигнала во многих технологиях, таких как Ethernet, Arcnet и Token ring. В настоящее время, благодаря своей дешевизне и лёгкости в монтаже, является самым распространённым решением для построения проводных (кабельных) локальных сетей.

Виды кабеля, который применяется в сетях

В зависимости от наличия защиты - электрически заземлённой медной оплетки или алюминиевой фольги вокруг скрученных пар, определяют разновидности данной технологии:

  • неэкранированная gay porn videos витая пара (англ. UTP - Unshielded twisted pair ) - без защитного экрана;
  • фольгированная витая пара (англ. FTP - Foiled twisted pair ), ) - присутствует один общий внешний экран в виде фольги;
  • экранированная витая пара (англ. STP - Shielded twisted pair ) - присутствует защита в виде экрана для каждой пары и общий внешний экран в виде сетки;
  • фольгированная best mobile porn экранированная витая пара (англ. S/FTP - Screened Foiled twisted pair ) - внешний экран из медной оплетки и каждая пара в фольгированной оплетке;

Экранирование обеспечивает лучшую защиту от электромагнитных наводок как внешних, так и внутренних, и т. д. Экран по всей длине соединен с неизолированным дренажным проводом, который объединяет экран в случае разделения на секции при излишнем изгибе или растяжении кабеля.

В зависимости от структуры проводников - кабель применяется одно- и многожильный. В первом случае каждый провод состоит из одной медной жилы и называется жила-монолит, а во втором - из нескольких и называется жила-пучок.

Одножильный кабель не предполагает прямых контактов с подключаемой периферией. То есть, как правило, его применяют для прокладки в коробах, стенах и т. д. с последующим терминированием розетками. Связано это с тем, что медные жилы довольно толсты и при частых изгибах быстро ломаются. Однако для «врезания» в разъемы панелей розеток такие жилы подходят как нельзя лучше.

В свою очередь многожильный кабель плохо переносит «врезание» в разъёмы панелей розеток (тонкие жилы разрезаются), но замечательно ведет себя при изгибах и скручивании. Кроме того, многожильный провод обладает бо?льшим затуханием сигнала. Поэтому многожильный кабель используют в основном для изготовления патчкордов (англ. patchcord ), соединяющих периферию с розетками.

Конструкция витопарного кабеля

Витопарный кабель состоит из нескольких витых пар. Проводники в парах изготовлены из монолитной медной проволоки толщиной 0,4-0,6 мм. Кроме метрической, применяется американская система AWG , в которой эти величины составляют 26AWG или 22AWG соответственно. В стандартных 4-х парных кабелях в основном используются проводники диаметром 0,51 мм (24AWG). Толщина изоляции проводника - около 0,2 мм, материал обычно поливинилхлорид (английское сокращение PVC), для более качественных образцов 5 категории - полипропилен (PP), полиэтилен (PE). Особенно высококачественные кабели имеют изоляцию из вспененного (ячеистого) полиэтилена, который обеспечивает низкие диэлектрические потери, или тефлона, обеспечивающего высокий рабочий диапазон температур

Также внутри кабеля встречается так называемая «разрывная нить» (обычно капрон), которая используется для облегчения разделки внешней оболочки - при вытягивании она делает на оболочке продольный разрез, который открывает доступ к кабельному сердечнику, гарантированно не повреждая изоляцию проводников. Также разрывная нить, ввиду своей высокой прочности на разрыв, выполняет защитную функцию.

Внешняя оболочка 4-х парных кабелей имеет толщину 0,5-0,9 мм в зависимости от категории кабеля и обычно изготавливается из поливинилхлорида с добавлением мела, который повышает хрупкость. Это необходимо для точного облома по месту надреза лезвием отрезного инструмента. Кроме этого, для изготовления оболочки используются полимеры, которые не поддерживают горения и не выделяют при нагреве галогены (такие кабели маркируются как LSZH - Low Smoke Zero Halogen). Кабели, не поддерживающие горение и не выделяющие дым, разрешается прокладывать и использовать в закрытых областях, где могут проходить воздушные потоки системы кондиционирования и вентиляции (так называемых пленум-областях).

В общем случае, цвета не обозначают особых свойств, но их применение позволяет легко отличать коммуникации c разным функциональным назначением, как при монтаже, так и обслуживании. Самый распространённый цвет оболочки кабелей - серый. У внешних кабелей внешняя оболочка чёрного цвета. Оранжевая окраска, как правило, указывает на негорючий материал оболочки.

Отдельно нужно отметить маркировку. Кроме данных о производителе и типе кабеля, она обязательно включает в себя метровые или футовые метки.

Форма внешней оболочки кабеля витая пара может быть различной. Чаще других применяется круглая форма. Для прокладки под ковровым покрытием может использоваться плоский кабель.

Кабели для наружной прокладки обязательно имеют влагостойкую оболочку из полиэтилена, которая наносится (как правило) вторым слоем поверх обычной, поливинилхлоридной. Кроме этого, возможно заполнение пустот в кабеле водоотталкивающим гелем и бронирование с помощью гофрированной ленты или стальной проволоки.

Категории кабеля

Существует несколько категорий кабеля витая пара, которые нумеруются от CAT1 до CAT7 и определяют эффективный пропускаемый частотный диапазон. Кабель более высокой категории обычно содержит больше пар проводов и каждая пара имеет больше витков на единицу длины. Категории неэкранированной витой пары описываются в стандарте EIA/TIA 568 (Американский стандарт проводки в коммерческих зданиях) и в международном стандарте ISO 11801.

  • CAT1 (полоса частот 0,1 МГц) - телефонный кабель, всего одна пара (в России применяется кабель и вообще без скруток - «лапша » - у нее характеристики не хуже, но больше влияние помех). В США использовался ранее, только в «скрученном» виде. Используется только для передачи голоса или данных при помощи модема.


  • CAT2 (полоса частот 1 МГц) - старый тип кабеля, 2 пары проводников, поддерживал передачу данных на скоростях до 4 Мбит/с, использовался в сетях Token ring и Arcnet. Сейчас иногда встречается в телефонных сетях.


  • CAT3 (полоса частот 16 МГц) - 4-парный кабель, используется при построении телефонных и локальных сетей 10BASE-T и token ring, поддерживает скорость передачи данных до 10 Мбит/с или 100 Мбит/с по технологии 100BASE-T4 на расстоянии не дальше 100 метров. В отличие от предыдущих двух, отвечает требованиям стандарта IEEE 802.3 .

  • CAT4 (полоса частот 20 МГц) - кабель состоит из 4 скрученных пар, использовался в сетях token ring, 10BASE-T, 100BASE-T4, скорость передачи данных не превышает 16 Мбит/с по одной паре, сейчас не используется.
  • CAT5 (полоса частот 100 МГц) - 4-парный кабель, использовался при построении локальных сетей 100BASE-TX и для прокладки телефонных линий, поддерживает скорость передачи данных до 100 Мбит/с при использовании 2 пар.

  • CAT5e (полоса частот 125 МГц) - 4-парный кабель, усовершенствованная категория 5. Скорость передач данных до 100 Мбит/с при использовании 2 пар и до 1000 Мбит/с при использовании 4 пар. Кабель категории 5e является самым распространённым и используется для построения компьютерных сетей.


  • CAT6 (полоса частот 250 МГц) - применяется в сетях Fast Ethernet и Gigabit Ethernet, состоит из 4 пар проводников и способен передавать данные на скорости до 1000 Мбит/с. Добавлен в стандарт в июне 2002 года.
  • CAT6a (полоса частот 500 МГц) - применяется в сетях Ethernet, состоит из 4 пар проводников и способен передавать данные на скорости до 10 Гбит/с и планируется использовать его для приложений, работающих на скорости до 40 Гбит/с. Добавлен в стандарт в феврале 2008 года.


Особое место занимают кабели категории 7 (не UTP!):

  • CAT7 - спецификация на данный тип кабеля утверждена только международным стандартом ISO 11801, скорость передачи данных до 10 Гбит/с, частота пропускаемого сигнала до 600-700 МГц. Кабель этой категории имеет общий экран и экраны вокруг каждой пары. Седьмая категория, строго говоря, не UTP, а S/FTP (Screened Fully Shielded Twisted Pair).

Каждая отдельно взятая витая пара, входящая в состав кабеля, предназначенного для передачи данных, должна иметь волновое сопротивление 100±25 Ом, в противном случае форма электрического сигнала будет искажена и передача данных станет невозможной. Причиной проблем с передачей данных может быть не только некачественный кабель, но также наличие «скруток» в кабеле и использование розеток более низкой категории, чем кабель.

Схемы обжима

Нумерация в штекере 8P8C

Существует два варианта обжимки разъёма на кабеле:

  1. для создания прямого кабеля - для соединения порта сетевой карты со свитчем/хабом,
  2. перекрёстного (использующий кроссированный MDI, англ. MDI-X ) кабеля, имеющий инвертированную разводку контактов разъёма для соединения напрямую двух сетевых плат, установленных в компьютеры, а также для соединения некоторых старых моделей хабов/свитчей (uplink порт).

Обжимается разъём RJ45.

Прямой кабель

Перекрёстный кабель для соединения двух сетевых карт напрямую (Crossover)(компьютер-компьютер)

Общие положения

Обжимной инструмент (кримпер)

Пара 1-2 (TDP-TDN) всегда требуется для передачи от порта MDI к порту MDI-X, пара 3-6 (RDP-RDN) - для приёма портом MDI от порта MDI-X; пары 4-5 и 7-8 применяются в зависимости от потребности (например, при использовании кабеля категории 3 в спецификации 100Base-T4) и обычно двунаправленные.

Использование кабеля, обжатого не по стандарту (жарг. битая пара ), может привести (в зависимости от длины кабеля) к тому, что кабель не будет работать совсем или будет очень большой процент потерь передаваемых пакетов.

Для проверки правильности обжатия кабеля, помимо визуального контроля, используют специальные устройства - кабельные тестеры. Такое устройство состоит из передатчика и приёмника. Передатчик поочерёдно подаёт сигнал на каждую из восьми жил кабеля, дублируя эту передачу зажиганием одного из восьми светодиодов, а на приёмнике, подсоединённому к другому концу линии, соответственно загорается один из восьми светодиодов. Если на передаче и на приёме светодиоды загораются подряд, значит, кабель обжат без ошибки.

Более дорогие модели кабельных тестеров могут иметь встроенное переговорное устройство, индикатор обрыва с указанием расстояния до обрыва и пр.

Данные hot milfs схемы обжимки подходят как для 100-мегабитного соединения, так и для гигабитного. При использовании 100-мегабитного соединения используются только 2 из 4 пар, а именно оранжевая и зелёная. Синяя и коричневая пары в таком случае могут быть использованы для подключения второго компьютера по тому же кабелю. Каждый конец кабеля раздваивают на два по две пары, и получают как бы два кабеля, но под одной изоляцией. Однако данная схема подключения может снизить скорость и качество передачи информации. При использовании гигабитного соединения используются 4 пары проводников.

Также существуют ограничения на выбор схемы перекрёстного соединения жил, накладываемые стандартом Power over Ethernet (POE), Power over Ethernet стандартизирован по стандарту IEEE 802.3af-2003). При прямом соединении жил в кабеле («один к одному»), данный стандарт будет работать автоматически.

Монтаж

При монтаже кабеля витой пары должен выдерживаться максимально допустимый радиус изгиба (8 внешних диаметров кабеля) - сильный изгиб может привести к увеличению внешних наводок на сигнал или привести к разрушению оболочки кабеля.

При монтаже экранированной витой пары необходимо следить за целостностью экрана по всей длине кабеля. Растяжение или изгиб приводит к разрушению экрана, что влечёт уменьшение сопротивляемости наводкам. Дренажный провод должен быть соединен с экраном разъема. Справа приводится инструкция по установке штекера.

S-Video

Интерфейс S-Video (Separate Video) очень часто и неоправданно называемый супер - видео наиболее часто используется в компьютерном мире и до недавнего времени являлся самым удобным способом синхронизации компьютера и телевизора (здесь имеются в виду аналоговые ЭЛТ телевизоры). Через этот разъем передается только видеосигнал, если вы решили воспользоваться этим соединением, звук придется передавать каким либо иным способом, или использовать отдельную акустическую систему. Кроме компьютеров разъем S-Video можно также встретить у многих аналоговых устройств, таких как видеомагнитофоны, видеокамеры, DVD плееры и еще многих других.

Существенным преимуществом данного подключения (по сравнению с простейшим композитным, на одном «тюльпане») является то, что сигналы яркости (англ. Intensity, Luminance, Y) и цветности (англ. Color, Chrominance, С) изображения проходят раздельно. Таким образом они никогда не пребывают в композитном режиме и на вертикальных гранях многокрасочных областей изображения не появляются точки сканирования кросс-яркости. Кроме того, нет необходимости фильтровать цепи яркости на телевизоре, чтобы избавиться от цветности сигнала, что позволяет увеличивать пропускную способности и, соответственно, разрешение экрана по горизонтали. Конечно разрешение по прежнему ограничивается ЭЛТ кинескопа, но это явное улучшение.

Существуют четырех и семи пиновые разъемы. В настоящее время самым распространенным является четырех пиновый (штырьковый) коннектор 4-pin mini DIN. У интерфейса S-Video отдельно по разным кабелям передается сигнал яркости и сигнал цветности, что обеспечивает лучшее качество картинки, чем при передаче по одному кабелю, как например, у композитного интерфейса, что является одним из преимуществ S-Video подключения. Кроме этого при передаче через S-Video разъем используется меньшее количество фильтров и это соответственно также приводит к улучшению качества сигнала.

Нумерация выводов 4-контактного

Внешний вид 4-контактных

разъемов S-Video

Нумерация выводов 7-контактного

разъёма S-Video. Вид от гнезда.

Гнездо 7-pin S-Video.

Следует отметить все-таки, что значительно разница в качестве изображения будет заметна лишь на больших диагоналях телевизоров, начиная от 32”. Также, будучи универсальным, этот способ передачи сигнала вобрал в себя и разъем SCART. В связи с распространением цифровых интерфейсов этот тип подключения востребуется все реже и реже. Вообще рекомендуется использовать данный способ подключения только в случаях, когда нет других вариантов (что бывает крайне редко), тот же уже вышеупомянутый SCART все-таки удобнее и функциональнее, а если речь идет о подключении компьютера, и у вас LCD или плазменный телевизор, советуют воспользоваться VGA или HDMI интерфейсом. Описание входов

4 PIN S-Video

7 PIN S-Video

На видеокартах ATI

На видеокартах nVidia

На ноутбуках LG, продуктах Intel, Apple Power Macintosh 6100AV/7100AV/8100AV и Apple PowerBook

Общий провод яркостного (Y) сигнала
Общий провод цветового (С) сигнала
Яркостный (Y) сигнал

Цветовой (С) сигнал

Цветовой (С) сигнал или компонентный (PR) красный
Общий провод композитного (V) «Видео» сигнала

композитный сигнал (V) «Видео» или компонентный (PB) синий (для ноутбука LG)

Не задействован

Композитный сигнал (V) «Видео» или компонентный (PB) синий

Общий провод композитного «Видео» сигнала (для ноутбука LG)

Композитный сигнал (V) «Видео»

Не задействован

SCART

SCART (фр. Syndicat des Constructeurs d"Appareils, Radiorecepteurs et Televiseurs , а также в просторечии «трещётка » - Объединение производителей радиоприемников и телевизоров) - европейский стандарт для подключения мультимедийных устройств, таких как телевизор, видеомагнитофон, DVD-проигрыватель. Другие названия: Peritel, евроразъём, Euro-AV.

Конструкция

Начнем с того, что контактов-иголок на самом деле 20. Роль 21-го контакта играет металлический экранчик. расположенный по периметру разъема. Его второе предназначение - защита контактов от механических воздействий со стороны. Ответная часть (гнездо) изготавливается методом литья из пластмассы. Может иметь как ушки для винтов или саморезов, так и приливы для установки на печатную плату.

Конструкция кабельных разъемов не отличается особой оригинальностью, но существует по меньшей мере три разновидности, отличающихся конструкцией корпуса - кабель может выводиться вбок, прямо, под углом. Разъем удерживается в гнезде за счет подпружиненных контактов-вилок довольно прочно. Даже слишком прочно, чтобы его легко вытаскивать. Да и вставлять его приходится с достаточной осторожностью, чтобы не сдвинуть телевизор или видео.

Качественная сторона

Как следует из описания, через контакты SCART передаются не только звуковые, но и видео, и RGB-сигналы. Частотный диапазон аудиоканалов не превышает 20-20000 Гц, видеосигнал занимает полосу частот до 6-8 МГц, а RGB-канал способен воспроизводить сигнал с полосой свыше 10 МГц (полоса частот видеоусилителей в современном телевизоре составляет от 20 МГц и выше). Если для передачи аудио в большинстве случаев достаточно экранированных проводов, то способен ли SCART воспроизводить без потерь широкополосный видеосигнал?

Известно, что для идеального согласования линии передачи сигнала определенными характеристиками (волновое сопротивление, емкость) должен обладать не только кабель, но и разъем. Трудно представить, что многоконтактный разъем, изготовленный из обычного полистирола, обладает такими же частотными характеристиками, как, скажем, коаксиальный BNC или даже широко распространенный RCA (он же Cinch, он же "тюльпан"). Тем не менее, попытка изначально улучшить частотные свойства разъема была сделана - в SCART каждый канал передачи (аудио, видео, RGB) имеет свой "земляной" проводник, что обеспечивает лучшую развязку между сигналами. Но и только.

Любой кабель, купленный на углу, конечно, не сводит к нулю, но снижает качество изображения. В нем используется дешевый экранированный провод, между тем как для передачи видеосигнала необходимо использовать коаксиальный кабель с волновым сопротивлением 75 Ом. Даже фирменный "полный" 21-проводный кабель, приобретенный в магазине, представляет из себя пучок проводов в общем экране (см. рис.).

Здесь уместно сказать о том, что на волне продвигаемого интереса к "супер"-кабелям (акустическим, аудио и др.) известные их производители предлагают и SCART-кабель, лишенный, как они утверждают, существующих недостатков. Внешне он очень эффектен - толстый блестящий жгут из раздельных экранированных аудио и видеокабелей, металлические или металлизированные (как на рисунке) разъемы, позолоченные контакты. Его стоимость начинается с 15-20 долларов, но вряд ли стоит ожидать от такого кабеля заметной отдачи, ведь разъем в вашем видеомагнитофоне или телевизоре остается тем же.

Кстати, стандарт МЭК933-1 предусматривает четыре вида кабелей: тип U - универсальный, обеспечивающий все соединения, V - без сигналов звука, С - без сигналов RGB и А - без видеосигналов и RGB.

Говоря real celebrity porn о сигналах, передаваемых через SCART, мы не упомянули о S-video, представляющем собой два сигнала - сигнал цветности и сигнал яркости. С появлением такого стандарта возможность работы с ним появилась и в SCART. Для сигнала яркости подошел канал "видео", а вот для сигнала цветности пришлось пожертвовать RGB, а точнее, каналом "красного" (см. схему). Подобная возможность реализуется только в тех телевизорах, где установлено два SCART: через второй в этом случае можно подключать RGB-источник. Но практически всегда наряду с таким способом подключения используется и разъем Mini-DIN.

Как жить?

Особенно если в доме только один аппарат имеет SCART, а другой (другие) - нет. Решение старо как мир - переходник или кабель-переходник. Первые представляют собой разъемы SCART с вмонтированными разъемами типа RCA или S-video. Для них подойдет кабель "тюльпан-тюльпан" или S-video-S-video. Переходники бывают одно- и двунаправленные, моно или стерео, с переключателями и без них.Разнообразие кабелей-переходников еще больше. Самые распространенные - SCART-RCA (или "скарт"-тюльпан). Среди них также одно и двунаправленные, стерео, моно. с дополнительными разъемами для управления переключением. В том случае, когда необходимо к одному устройству подсоединить два, можно использовать SCART-разветвитель на два или три направления.

Найти в продаже сейчас можно практически любой переходник или кабель. Некоторые фирмы (Sony, JVC и др.) даже продают их в комплекте с видеокамерами. Для тех, кого не устраивают или недоступны предлагаемыеварианты, мы приводим таблицу назначений контактов в SCART, Приводим также схемы распайки универсального "полного" кабеля (тип U) и "усеченного" AV-кабеля (тип С). Обратите внимание на "крест-накрест"-соединения, именно они обеспечивают двунаправленность.

Назначение

Уровень (размах) сигнала

Входное (выходное)

сопротивление

Соответствие цветов

разъёма RCA (разъём)

1 Выход правого звукового канала 0.2~2В
(0.5В эфф.)
Зелёный
2 Вход правого звукового канала 0.2~2В
(0.5В эфф.)
>10кОм Красный
3 Выход левого звукового канала (или моно) 0.2~2В
(0.5В эфф.)
Чёрный
4 Общая «земля» для звуковых каналов
5 «Земля» для синего сигнала
6 Вход левого звукового канала (или моно) 0.2~2В
(0.5В эфф.)
>10кОм Белый
7 Вход синего сигнала B Размах 0.7В 75Ом
8 U перекл. AV-TV(16:9) 0~2В (лог"0")>TV
9.5~12В (лог"1")>AV
вход: >10кОм
выход:
9 «Земля» для зелёного сигнала
10 Синхросигнал (Data 2)
11 Вход зелёного сигнала G Размах 0.7В 75Ом
12 Data2 I2C
13 «Земля» для красного сигнала / Общий C-канала S-Video
14 Data/Clock I2C, общий
15 Вход красного сигнала R / C-канал S-Video Размах 0.7В 75Ом
16 U перекл. TV-RGB (FastSwitch) 1~3В (лог"1")>RGB
0~0.4В (лог"0")>TV
75Ом
17 Video, общий / Общий Y-канала S-Video
18 U перекл., общий для контакта 16
19

Выход композитного видеосигнала / Выход Y-канала S-Video

Размах 0.7В 75Ом Синий
20 Вход композитного видеосигнала / Вход Y-канала S-Video Размах 0.7В 75Ом Жёлтый
21 Заземление корпуса

Как следует из сказанного, известные неудобства SCART все же компенсируются его главным достоинством - универсальностью. Но реализовать все его возможности можно только в том случае, если оба соединяемых аппарата имеют такой разъем. При подборе теле и видеотехники не поленитесь уточнить, что позволяет имеющийся SCART.

Недавнее удивление, к примеру, пришлось испытать, узнав, что видеомагнитофон Thomson 6890 (и ряд других моделей) воспроизводит меню на экране телевизора только(!) через RGB-канал. К чести фирмы, в комплекте к нему прилагался "полный" SCART. Используйте любую возможность улучшить качество изображения. В идеале это RGB-канал, но далеко не во всяком телевизоре он реализован, да и редкий видеомагнитофон может выдавать такой сигнал. Но DVD может!

S/PDIF

TOSLINK - оптический

разъём S/PDIF.

S/PDIF или S/P-DIF - расшифровывается как Sony/Philips Digital Interface Format , или как Sony /Philips Digital Interconnect Format описано также как IEC black amateur porn 958 type II в международном стандарте IEC-60958. Является совокупностью спецификаций протокола низкого уровня и аппаратной реализации, описывающих передачу цифрового звука между различными компонентами аудиоаппаратуры. При описании S/PDIF необходимо описать как физическую часть (то есть, собственно, каким образом сигнал передаётся и по чему), так и программную часть (то есть используемый протокол).

S/P-DIF - потребительская версия стандарта известного как AES/EBU; имеет небольшие отличия в протоколе и требует менее дорогих аппаратных средств.

Приложения

S/PDIF первоначально применялся в CD-плеерах (и DVD-плеерах, проигрывающих компакт-диски), а затем стал общим способом соединения и передачи звука в других аудиокомпонентах, например, таких как MiniDisc-плееры и звуковые карты для персональных компьютеров. Он также приобрёл популярность в автомобильном звуке, где прежний беспорядок многочисленных проводов может быть заменен единственным волоконно-оптическим кабелем, который устойчив к электрическим помехам.

Другое применение интерфейс S/PDIF находит в передаче цифрового потока окружающего звука как определено стандартом IEC 61937. Этот режим используют, чтобы подключить выход DVD-плеера к входу AV-ресивера домашнего кинотеатра, который поддерживает форматы Dolby Digital или Digital Theatre System(DTS) окружающего звука.

S/PDIF (Sony*/Philips* Digital Interface) - это интерфейс формата передачи аудио, который поддерживает передачу цифровых аудио сигналов от одного устройства к другому без процедуры преобразования в аналоговый сигнал, что позволяет избежать ухудшения качества звука.

Разъем RCA - наиболее распространенный разъем, используемый с интерфейсом S/PDIF и идентичный разъему, применяемому в потребительской аудио продукции. Кроме того, в некоторых случаях используется оптический разъем. Для того чтобы подключить аудиосистему непосредственно к динамикам, последние должны поддерживать вход S/PDIF.

Если системная плата для настольных ПК не поддерживает встроенные разъемы S/PDIF, можно установить звуковую карту, включающую эти разъемы.

Аппаратная реализация

Спецификация S/PDIFormat допускает несколько типов кабеля и разъемов. Ключевые слова для электрического типа - «coaxial» и «RCA jack». Другой тип назван «оптическим» с часто употребляемым словом «TOSLINK» или, реже, «EIAJ Optical». Существуют адаптеры для перехода с коаксиального RCA Jack S/PDIF на оптический TOSLINK S/PDIF и наоборот, для них необходим внешний источник питания. Достоинством оптического типа S/PDIF является отличная устойчивость к электрическим помехам.

S/PDIF был разработан на основе профессионального стандарта звуковой индустрии, известного как AES/EBU, который обычно применяется для цифровой записи на магнитную ленту в DAT-системах и для передачи звука в профессиональных звукозаписывающих студиях. S/PDIF остается во многом идентичным на уровне протокола, но имеет другие физические разъёмы, которые в отличие от XLR дешевле и легче в использовании.

Типы разъёмов и кабелей

  • Цифровой сигнал с TTL уровнями. TTL - Транзисторно-транзисторная логика. TTL обычно (но не всегда!) имеет два уровня: >2,4 В (единица) и 0-0,4 В (ноль). TTL S/PDIF выходы также есть в звуковых картах.
  • Коаксиальный. Коаксиальный кабель сопротивлением 75 Ом, присоединённый к разъёмам RCA. Обычные аудиокабели (тюльпаны) могут быть использованы для передачи S/PDIF сигнала на короткие расстояния (до 0,5 м), для больших расстояний надо использовать 75 омный коаксиальный кабель. На разъёмах с каждой стороны должны быть установлены 75 омные терминирующие резисторы. Без нагрузочных резисторов отклонение напряжения равно ±0,5В, с резисторами ±0,25В.
  • TOSLINK - волоконно-оптический кабель. Сейчас большую популярность приобрели разъемы типа MiniTOSLINK -это разъем оптического кабеля в форм-факторе 3,5 jack. Очень часто такие разъемы встречаются в современных ноутбуках, где выход S/PDIF совмещен с выходом на наушники. Для соединения такого ноутбука с ресивером потребуется кабель MiniTOSLINK - TOSLINK, либо переходник для стандартного кабеля TOSLINK-TOSLINK.

Протокол

S/PDIF может быть использован для передачи цифровых сигналов множества форматов. Наиболее распространены из них: формат использованный в DAT с частотой дискретизации 48 кГц и формат записи компакт-дисков с частотой дискретизации 44,1 кГц. Для того, чтобы поддерживать обе эти системы, формат не имеет определенного битрейта данных. Взамен данные передаются, используя Biphase Mark Code, который имеет один или два перехода для каждого бита данных, позволяя передавать оригинальный word clock вместе с самим сигналом.

Расширяя возможности данного интерфейса, S/P-DIF может быть использован для передачи 20-битных потоков аудиоданных плюс другая связанная информация. Можно также передавать 16-битные потоки с нулевым заполнением или 24-битовые, за счет отказа от дополнительной информации.

Протокол низкого уровня почти тот же, что и в описании AES/EBU. Единственное различие - бит статуса канала («Channel status bit»).

Бит статуса канала («Channel status bit») в S/P-DIF

В каждом суб-фрейме имеется один канальный бит статуса, таким образом образуется 192-битовое слово в каждом аудиоблоке. Это означает, что есть 192/8 =24 байта доступных в каждом аудиоблоке. Значение канального бита статуса в S/P-DIF полностью отличается от AES/EBU.

Для SPDIF, 192-битовые слова поделены на 12 слов по 16 битов каждое. Первые 6 битов первого слова - управляющий код; значение этих битов показано в таблице:

"Тюльпан" (Cinch/RCA): композитный видео, аудио

Цветовую кодировку можно только приветствовать: жёлтый для видео (FBAS), белый и красный "тюльпаны" для аналогового звука, а также три "тюльпана" (красный, синий, зелёный) для компонентного выхода HDTV

Стандартные цвета

Различные сигналы используют свой цвет разъёма, определяемый стандартом, но многоканальное аудио (7.1 и далее) до сих пор не имеет стандартных цветов.

В случае использования вывода звука на динамики телевизора, приводится приведение к левому каналу (разъём белого цвета).

Композитный аналоговый видеосигнал Составной Жёлтый
Аналоговый аудиосигнал Левый/Моно Белый
Правый Красный
Центр Зелёный
Левый (surround) Синий
Правый (surround) Серый
Левый phone porn тыловой (surround) Коричневый
Правый тыловой (surround) Рыжевато-коричневый
(цвета загара )
Сабвуфер Пурпурный
Цифровой аудиосигнал S/PDIF Оранжевый
Компонентное аналоговое видео (YPbPr) Y Зелёный
P B Синий
P R Красный
Компонентное аналоговое видео/VGA (RGB/HV) R Красный
G Зелёный
Синий
H (Сигнал синхронизации по горизонтали)/
S (Синхросигнал композитного видео)
Жёлтый
V (Сигнал синхронизации по вертикали) Белый

DVI

Digital Visual Interface , сокр. DVI (англ. цифровой видеоинтерфейс ) - стандарт на интерфейс и соответствующий разъём, предназначенный для передачи видеоизображения на цифровые устройства отображения, такие как жидкокристаллические мониторы и проекторы. Разработан консорциумом Digital Display Working Group.

Технические подробности

Формат данных, используемый в DVI, основан на PanelLink - формате последовательной передачи данных, разработанном фирмой Silicon Image. Использует технологию высокоскоростной передачи цифровых потоков TMDS (Transition Minimized Differential Signaling , дифференциальная передача сигналов с минимизацией перепадов уровней) - три канала, передающие потоки видео и дополнительных данных, с пропускной способностью до 3,4 Гбит/с на канал.

Максимальная длина кабеля не указана в спецификации DVI, потому что она зависит от количества передаваемой информации. Кабель длиной 4,5 метра можно использовать для передачи изображения с разрешением до 1920 x 1200 точек. По кабелю длиной 15 метров получится передать в нормальном качестве изображение с разрешением 1280 x 1024 точек. Для усиления сигнала при передаче по кабелю большой длины применяются специальные устройства. При их использовании длина кабеля может быть увеличена до 61 метра (в случае использования усилителя с собственным источником питания).

Single link (одинарный режим) DVI использует четыре витых пары проводов (красный, зелёный, синий, и clock), обеспечивающих возможность передавать 24 бита на пиксель. С ним может быть достигнуто максимальное возможное разрешение 1920x1080 при 60 Гц.

Dual link (двойной режим) DVI удваивает пропускную способность и позволяет получать разрешения экрана 2560x1600 и 2048x1536. Поэтому для самых крупных LCD мониторов с большим разрешением, таких, как 30" модели, обязательно нужна видеокарта с двухканальным DVI Dual-Link выходом.

Виды DVI

  • DVI-A - только аналоговая передача.
  • DVI-I - аналоговая и цифровая передача.
  • DVI-D - только цифровая передача.

Видеокарты с DVI-A не поддерживают стандартные мониторы с DVI-D.

DVI-I–видеокарту можно подключить к DVI-D–монитору (кабелем с двумя коннекторами DVI-D–папа).

Если у вашего монитора максимальное разрешение экрана 1280x1024, то подключать его кабелем dual link не имеет смысла, т.к. данный кабель предназначен для мониторов с большим разрешением.

Разновидности разъёмов DVI

Спецификация

Цифровая передача

  • Минимальная тактовая частота: 21,76 МГц
  • Максимальная тактовая частота в одинарном режиме: 165 МГц
  • Максимальная тактовая частота в двойном режиме: Ограничивается только кабелем
  • Передаётся пикселей за такт: 1 (одинарный режим) или 2 (двойной)
  • Битов в пикселе: 24 (одинарный режим) или 25-48 (двойной, если передается 1 пиксель за такт)
  • Примеры режимов single link:
    • HDTV (1920×1080), частота 60 Гц с 5 % LCD blanking (131 МГц)
    • WUXGA (1920×1200), частота 60 Гц (154 МГц)
    • UXGA (1600×1200), частота 60 Гц with GTF blanking (161 МГц)
    • SXGA (1280×1024), частота 85 Гц with GTF blanking (159 МГц)
  • Примеры режимов dual link:
    • QXGA (2048×1536), частота 75 Гц with GTF blanking (2×170 МГц)
    • HDTV (1920×1080), частота 85 Гц with GTF blanking (2×126 МГц)
    • WQXGA (2560×1600), частота 60 Гц (на 30-дюймовом ЖК-дисплее)
    • WUXGA (1920×1200), частота 120 Гц (2x154 МГц)

«5 % LCD blanking» означает, что 5 % пропускной способности идет на интервалы гашения после каждой строки и каждого кадра. GTF (англ. Generalized Timing Formula ) - стандарт VESA.

Аналоговая передача

  • Пропускная способность RGB-сигнала: 400 МГц (3 dB)

Разъём

Нумерация контактов, вид на гнездо
1 2 3 4 5 6 7 8 C1 C2
9 10 11 12 13 14 15 16 C5
17 18 19 20 21 22 23 24 C3 C4

Назначение контактов

Контакт

Название

Назначение

1 Данные TMDS 2- Digital red (1-й канал)
2 Данные TMDS 2+ Digital red + (1-й канал)
3 Данные TMDS 2/4 shield
4 Данные TMDS 4 Digital green (2-й канал)
5 Данные TMDS 4+ Digital black porn green + (2-й канал)
6 Строб DDC
7 Данные DDC
8 Аналоговая вертикальная синхронизация
9 Данные TMDS 1 Digital green (1-й канал)
10 Данные TMDS 1+ Digital green + (1-й канал)
11 Данные TMDS 1/3 shield
12 Данные TMDS 3 Digital blue (2-й канал)
13 Данные TMDS 3+ Digital blue + (2-й канал)
14 +5 В Питание для монитора в спящем режиме
15 Заземление Земля для контактов 14, 8 и C4
16 Определение подключения
17 Данные TMDS 0 Digital blue (1-й канал) и цифровая синхронизация
18 Данные TMDS 0+ Digital blue + (1-й канал) и цифровая синхронизация
19 Данные TMDS 0/5 shield
20 Данные TMDS 5 Digital red (2-й канал)
21 Данные TMDS 5+ Digital red + (2-й канал)
22 Экранирование строба TMDS
23 Строб priligy online TMDS + Digital clock + (1-й и 2-й каналы)
24 TMDS Digital clock (1-й и 2-й каналы)
C1 Аналоговый красный сигнал
C2 Аналоговый зелёный сигнал
C3 Аналоговый синий сигнал
C4 Аналоговая горизонтальная синхронизация
C5 Аналоговое заземление Земля для аналоговых красного, зелёного и синего