Цоколевка разъема блока питания компьютера. Выбор БП по визуальным признакам – руководство

28.01.2019
. Где +в компьютере 12 вольт

2016-03-04

Где +в компьютере 12 вольт

Напряжения с компьютерного блока питания. Разъемы, мощность

Сегодня не редко можно увидеть, как люди выбрасывают компьютерные блоки питания. Ну или БП просто валяются без дела, собирая пыль.

А ведь их можно использовать в хозяйстве! В этой статье я расскажу, какие напряжения можно получить на выходе обычного компьютерного блока питания.

Небольшой ликбез о напряжениях и токах компьютерного БП

Во-первых, не стоит пренебрегать техникой безопасности.

Если на выходе блока питания мы имеем дело с безопасными для здоровья напряжениями, то вот на входе и внутри него 220 и 110 Вольт! Поэтому, соблюдайте технику безопасности. И позаботьтесь о том, чтобы никто другой не пострадал от экспериментов!

Во-вторых, нам потребуется Вольтметр или мультиметр. С помощью него можно измерить напряжения и определить полярность напряжения (найти плюс и минус).

В-третьих, на блоке питания вы можете найти наклейку, на которой будет обозначен максимальный ток, на который рассчитан блок питания, по каждому напряжению.

На всякий случай отнимите от написанной цифры 10%. Так вы получите наиболее точное значение (производители часто врут).

В-четвертых, блок питания ПК типа АТХ предназначен для формирования постоянных питающих напряжений +3.3V, +5V, +12V, -5V, -12V. Поэтому не пытайтесь получить на выходе переменное напряжение.Мы же расширим набор напряжений путем комбинирования номинальных.


Ну что, усвоили? Тогда продолжаем. Пора определиться с разъемами и напряжениями на их контактах.

Разъемы и напряжения компьютерного блока питания

Цветовая маркировка напряжений компьютерного блока питания

Как вы могли заметить, провода, выходящие из блока питания, имеют свой цвет. Это не просто так. Каждый цвет обозначает напряжение. Большинство производителей стараются придерживаться одного стандарта, но бывают совсем китайские блоки питания и цвет может не совпадать (именно поэтому мультиметр в помощь).

В нормальных БП маркировка по цветам проводов такая:

  • Черный - общий провод, «земля», GND
  • Белый - минус 5V
  • Синий - минус 12V
  • Желтый - плюс 12V
  • Красный - плюс 5V
  • Оранжевый - плюс 3.3V
  • Зеленый - включение (PS-ON)
  • Серый - POWER-OK (POWERGOOD)
  • Фиолетовый - 5VSB (дежурного питания).

Распиновка разъемов блока питания AT и ATX

Для вашего удобства я подобрал ряд картинок с распиновкой всех типов разъемов блока питания на сегодняшний день.

Для начала изучим типы и виды разъемов (коннекторов) стандартного блока питания.

Для «запитки» материнской платы используется разъем ATX с 24 контактами или разъем AT с 20-ю контактами. Он же используется для включения блока питания.


Для жестких дисков, сидиромов, картридеров и прочего используется MOLEX.

Большая редкость сегодня разъем для flopy - дисков. Но на старых БП можно встретить.

Для питания процессора используется 4-контактный разъем CPU. Их бывает два или еще сдвоеный, то есть 8-контактный, для мощных процессоров.

Разъем SATA - пришел на смену разъема MOLEX. Используется для тех же целей, что и MOLEX, но на более новых устройствах.

Разъемы PCI, чаще всего служат для подачи дополнительного питания на разного рода PCI express устройства (наиболее распространены для видеокарт).

Перейдем непосредственно к распиновке и маркировке. Где же наши заветные напряжения? А вот они!


Еще одна картинка с распиновкой и цветовым обозначением напряжений на разъемах БП.


Ниже приведена распиновка блока питания типа AT.


Ну вот. С распиновкой компьютерных блоков питания разобрались! Самое время перейти к тому, как получить необходимые напряжения из блока питания.

Получение напряжений с разъемов компьютерного блока питания

Теперь, когда мы знаем, где взять напряжения, воспользуемся таблицей, которую я привел ниже. Пользоваться ей надо следующим образом: положительное напряжение+ ноль= итого .

Положительное ноль итого (разность) +12В +12В +5В -5В +10В +12В +3,3В +8,7В +3,3В -5В +8,3В +12В +5В +7В +5В 0В +5В +3,3В +3,3В +5В +3,3В +1,7В

Важно помнить, что ток итогового напряжения будет определяться минимальным значением по использованным номиналам для его получения.

Также не забывайте, что для больших токов желательно использовать толстый провод.

Самое главное!!! Блок питания запускается замыканием проводов GND и PWR SW . Работает до тех пор, пока данные цепи замкнуты!

ПОМНИТЕ! Любые эксперименты с электричеством необходимо проводить со строгим соблюдением правил электробезопасности!!!

Дополнение по разъемам. Уточнение распиновки PCIe и EPS разъемов.

PCIe и EPS
  1. Блок питания компьютера
  2. Мощность
  3. Активный или пассивный PFC?
  4. Охлаждение блока питания
  5. Разъемы и кабели
  6. Бренды и производители
  7. Из истории
  8. Перспективы развития

Блок питания компьютера

Правильно выбрать блок питания для компьютера - иногда может быть не так просто, как кажется. От этого выбора зависит стабильность, а также срок службы всех используемых компонентов ПК, и подходить вопросу выбора блока питания - нужно серьезно. В данном обзоре, мы попытаемся рассмотреть основные моменты, которые помогут сделать правильный выбор.

Мощность

На выходе блока питания присутствуют следующие постоянные напряжения: +5 V, +12 V (также +3.3 V), и - вспомогательные (минус 12 V и + 5 V в простое). Основной же нагрузкой сейчас «принято» загружать линию +12 V.

Выходная мощность (W - Ватт) рассчитывается по простой формуле: она равна произведению U на J, где U – напряжение (в Вольтах), J – сила тока (в Амперах). Напряжения – постоянны, поэтому, чем больше мощность, тем больше должна быть сила тока по линиям.

Но, оказывается, тут тоже не все просто. При сильной нагрузке на комбинированную линию +3.3 / +5, уменьшиться может мощность по линии +12. Пример - маркировка блока питания бюджетного бренда Cooler Master (модели RS-500-PSAP-J3):


Максимальная суммарная мощность по линиям +3.3 и +5 равна 130W (что – указано на упаковке), ну а максимальная мощность по «наиболее важной» линии +12V - равна 360W.

Но и это – не все. Обратим внимание на надпись ниже:

3.3V и +5V и +12V суммарная мощность не должна превышать 427.9 W. Как бы, теоретически (глядя в «таблицу»), мы «видим» 490W (360 плюс 130), а здесь - всего лишь 427.9.

Что это даст нам на практике: если нагрузка по линии +3.3V и 5V будет в сумме, скажем 60W, то отняв от приводимой производителем мощности 427.9, т.е. 427.9 – 60, получаем 367.9W. Мы получим только 360 Ватт по линии +12V. От которой идет как раз «основное потребление»: ток на процессор, видеокарту.

Автоматический расчет мощности

Для расчета мощности блоков питания, можно воспользоваться калькулятором в браузере: http://www.extreme.outervision.com/psucalculatorlite.jsp. Хотя он - на английском языке, разобраться можно. Таких сервисов, в интернете достаточно много.


В общем, здесь можно выбрать почти что все, что нужно, включая конкретный тип CPU, формат материнской платы (micro-ATX или ATX), число планок памяти, винчестеров, вентиляторов… Для расчета, надо жать на прямоугольную кнопку «Calculate». Сервис выдаcт: как рекомендуемое, так и минимально возможное значение мощности (в Ваттах) для вашей системы.

Однако, по опыту, можно считать: офисный компьютер (с двух-ядерным CPU), может довольствоваться блоком питания на 300W. Для домашнего (игрового, с дискретной видеокартой) – подходит БП 450 - 500W, ну а для мощных игровых ПК с «верхней» (топовой) картой (либо – двумя, в режиме Crossfire или SLI) - Total Power (суммарная мощность) начинается от 600 - 700W.

Центральный процессор, даже при максимально возможной нагрузке, потребляет 100 - 180W (исключение – 6-ядерные AMD), видеокарта дискретная – от 90 до 340W, сама материнская плата - 25-30W (планка памяти - 5-7W), жесткий диск 15-20W. Учитывайте при этом, что основная нагрузка (процессор и видеокарта) ложится на линию «12V». Ну и, желательно добавить запас по мощности (10-20%).

КПД – коэффициент полезного действия


Немаловажным критерием будет и КПД блока питания. Коэффициент полезного действия (КПД) - отношение полезной мощности, выдаваемой блоком питания, к потребляемой им от сети. Если схема блока питания ПКсодержала бы лишь трансформатор, его КПД был бы около 100%.

Рассмотрим пример, когда блок питания (с известным КПД - 80%) обеспечивает на выходе мощность в 400W. Если это число (400) разделить на 80% - получим 500W. А блок питания с теми же характеристиками, но с меньшим КПД (70%), будет потреблять уже 570W.

Но – не надо воспринимать эти цифры «всерьез». Блок питания большую часть времени – нагружен не полностью, например, это значение может быть 200W (потреблять от сети компьютер будет меньше).

Существует организация, в функции которой входит тест блоков питания на соответствие уровню заявленного стандарта КПД. Сертификация 80 Plus, при этом, проводится только для сетей на 115 Вольт (распространенных в США), начиная же с «класса» 80 Plus Bronze, все блоки тестируются для использования в 220В-электросети. Например, если сертификация пройдена в классе 80 Plus Bronze, КПД блока питания составляет 85% при «половинной» загрузке по мощности, и 81% - при заявленной мощности.


Наличие логотипа на блоке питания говорит, что товар соответствует уровню сертификации.

Плюсы высокого КПД: меньше энергии отводится «в виде тепла», и система охлаждения, соответственно, будет менее шумной. Во-вторых – очевидна экономия электричества (хотя и, не очень большая). Качество у «сертифицированных» БП, как правило, высокое.

Активный или пассивный PFC?

Power Factor Correction (PFC) – коррекция коэффициента мощности. Power Factor - отношение активной мощности к полной (активной плюс реактивной).

Нагрузкой же, реактивная мощность не потребляется – она на 100% отдается обратно в сеть, на следующем полупериоде. Однако, с ростом реактивной мощности, растет максимальное (за период) значение силы тока.

Слишком большая сила тока в проводах 220В – хорошо ли это? Наверное, нет. Поэтому, с реактивной мощностью по возможности борются (особенно это актуально для действительно мощных устройств, «переходящих» предел в 300-400 Ватт).

PFC – может быть пассивным или активным.

Преимущества активного метода:

Обеспечивается близкий к идеальному значению Power Factor (коэффициент мощности), вплоть до значения, близкого к 1. При PF=1, сила тока в проводе 220В не превысит значение «мощность делить на 220» (в случае меньших значений PF, сила тока – всегда несколько больше).

Недостатки активного PFC:

Повышается сложность – снижается общая надежность блока питания. Самой системе активного PFC - требуется охлаждение. Кроме того, не рекомендуют использовать системы активной коррекции с автовольтажем совместно с источниками ИБП (UPS).

Преимущества пассивной PFC:

Отсутствуют недостатки активного метода.

Недостатки:

Система – малоэффективна при больших значениях мощности.


Что именно выбрать? В любом случае, приобретая БП меньшей мощности (до 400-450W), в нем чаще всего вы обнаружите PFC пассивной системы, а более мощные блоки, от 600 W – чаще встречаются с активной коррекцией.

Охлаждение блока питания

Наличие в любом блоке питания вентилятора для охлаждения - считается нормой. Диаметр вентилятора – может быть равным 120 мм, встречается вариант на 135 мм и, наконец, 140 мм.


Системный блок предусматривает установку БП вверху корпуса – тогда, выбирайте любую модель с горизонтально расположенным вентилятором. Больше диаметр – меньше шум (c одинаковой мощностью охлаждения).

Скорость вращения должна меняться в зависимости от внутренней температуры. Когда БП не перегревается – зачем нужно крутить «вентиль» на всех оборотах, и досаждать пользователю шумом? Существуют модели БП, полностью останавливающие свой вентилятор при потребляемой мощности менее 1/3 расчетной. Что - удобно.

Главное в системе охлаждения БП – это ее тишина (или – полное отсутствие вентилятора, такое тоже встречается). С другой стороны, охлаждение нужно затем, чтобы не допустить перегрева деталей (высокая мощность, в любом случае, влечет тепловыделение). На больших мощностях, без вентилятора – не обойтись.

Примечание: на фото – результат моддинга (удаление стандартной решетки-прорези, установка вентилятора Noktua и гриля 120 мм).

Разъемы и кабели

При покупке и выборе, обращайте внимание на количество доступных разъемов и длину проводов, идущих от блока питания. В зависимости от геометрии корпуса, нужно выбирать БП с достаточным по длине жгутом кабеля. Для стандартных корпусов ATX, достаточно будет жгута 40-45 см.

Блок питания, работающий в домашнем и офисном компьютере, имеет разъемы:

Это - 24-х контактный разъем питания материнской платы ПК. Обычно здесь – раздельно 20 и 4 контакта, но бывает – и монолитный, 24-контактный.

Разъем питания процессора. Обычно он 4-х контактный, и только для очень мощных процессоров используют 8 контактов. Правильно выбрать блок питания для компьютера можно, ориентируясь на соответствующий разъем самой материнской платы.

Разъем для питания видеокарты – выглядит аналогично, и отличается тем, что он - 6-ти либо 8-ми контактный.

Разъемы (коннекторы) для питания SATA-устройств (жестких дисков, оптических приводов), четырех контактные Molex (для IDE), и для включения FDD (или кард-ридера) – знакомы большинству пользователей:

Примечание: количество всех дополнительных разъемов (SATA, MOLEX, FDD) должно быть достаточным для подключения устройств, размещаемых внутри системного блока.


Монтаж – демонтаж

Для демонтажа старого блока питания, отключите его провод 220 Вольт. Затем, необходимо выждать 2-3 минуты, и только затем приступать к работе. Внимание! Несоблюдение данного требования может повлечь электротравму.

Блок питания в любом ПК крепится к задней стенке на 4-х винтах (саморезах). Откручивать их можно, только отключив все внутренние разъемы и штекеры блока питания (2 разъема материнской платы, видеокарты, коннекторы дополнительных устройств).


Подключить блок питания к компьютеру можно в обратном порядке: сначала – монтируем в корпус, закрепляя винтами, затем – подключаем разъемы.

Примечание: при манипуляциях с блоком питания, кулер процессора может мешать. Если есть возможность его демонтировать - воспользуйтесь этим (поставите на место – потом, перед включением).

Включение компьютера с новым БП

Подав питание 220 Вольт на новый БП, не нужно сразу включать компьютер. Подождите секунд 10-15 сначала: вы будете слушать, не происходит ли что-либо «неординарное». Если слышим писк, звон дросселей – идем и меняем блок питания по гарантии. Если же вы слышите периодически повторяющийся «металлический» щелчок – не включайте компьютер с таким блоком питания.

Если в дежурном режиме, блок питания «щелкает» - это работает система защиты. Отключите такой блок питания, отсоедините его разъемы (коннекторы). Можно попробовать собрать то же самое еще раз - если проблема повторяется, несем блок питания в сервисный центр (возможно, неисправен сам блок).

Компьютер с исправным БП включается практически сразу же, при нажатии кнопки «Power» ATX-корпуса. Должно появиться изображение на мониторе – теперь вы можете продолжить работу, но уже - с новым блоком питания.


Модульные кабели и разъемы


Многие более мощные модели блоков питания сейчас используют так называемое «модульное» подключение. Добавление внутренних кабелей с соответствующими ответными разъемами – происходит по необходимости. Это удобно, потому, что в корпусе компьютера уже не надо держать лишние (неиспользуемые) провода, к тому же, так - меньше путаницы. А отсутствие лишних проводов, улучшает также циркуляцию горячего воздуха. В модульных блоках питания, «несъемными» делают только шнуры с разъемом для материнской платы/процессора.


Бренды и производители

Все фирмы (производители блоков питания для компьютера) – принадлежат одной из 3-х основных групп:

  1. Производят полностью свою продукцию – такие бренды, как Hipro, FSP, Enermax, Delta, также HEC, Seasonic.
  2. Производят продукцию, перекладывая часть процесса изготовления на другие компании - Corsair, Silverstone, Antec, Power&Cooling и Zalman.
  3. Перепродают готовые блоки под собственной маркой (некоторые – производят «отбор», некоторые - нет): Chiftec, Gigabyte, Cooler Master, OCZ, Thermaltake.

Каждый бренд, приведенный выше, смело можно рекомендовать. В интернете, к тому же, приводится много обзоров и тестов для «фирменных» блоков питания, по которым можно ориентироваться пользователю.

Перед покупкой БП, его стоит взвесить (достаточно и подержать в руке). Это позволит более-менее понять, что у него внутри. Конечно, способ это - неточный, однако он позволяет сразу «отмести» явно «дешевый» БП.

Масса блока питания зависит от качества стали, габаритов вентилятора, а (главное): количества дросселей и веса радиаторов внутри. Если в БП не хватает каких-то катушек индуктивности (или, допустим, конденсаторы - уменьшенной емкости), это говорит об «удешевлении» электрической схемы: БП будет весить 700-900 гр. Хороший БП (450-500W) весит обычно от 900 гр. до 1,4 кг.

Из истории

На рынке персональных компьютеров, то есть не только IBM-совместимых, а – в более общем смысле «компьютеров», на стандартизацию компонентов (БП, материнской платы) изначально пошла компания IBM. Остальные затем стали это «копировать». Все известные форм-факторы для блоков питания IBM-совместимых ПК, основаны на какой-либо из моделей БП: PC/XT, PC/AT, и Model 30 PS/2. Все совместимые ПК, так или иначе, могли использовать один из трех оригинальных стандартов, разработанных IBM. Эти стандарты были популярны вплоть до 1996 г., и даже позднее – современный стандарт ATX восходит к физической компоновке PS/2 Model 30.

Новый форм-фактор, то есть известный нам ATX, определила в 1995 г. компания Intel (тогда - партнер IBM), представив стандарт для платы и блока питания. Новый стандарт обрел популярность с 1996 г., и производители постепенно начали отходить от устаревшего стандарта AT. ATX и некоторые «ответвления» стандарта, которые за ним последовали, используют отличные от форм-фактора AT разъемы мат. платы (не только с дополнительными напряжениями, но и сигналами, которые позволяют обеспечивать большую мощность и дополнительные возможности).

Все IBM-овские стандарты предусматривали физически один и тот же разъем, подающий питание на материнскую плату. Для включения и выключения, чтобы подать питание на компьютер, использовался тумблер (или кнопка), размыкающий провод с напряжением 220 Вольт. Что было не очень удобно (особенно при разборе/ремонте ПК). Поэтому, появился новый стандарт, «не допускающий» напряжение более 12 Вольт внутри системного блока (внутри корпуса).

Необходимо сказать, что сама схема питания (принцип ее построения), начиная от первых PC XT, значительных изменений не получила. Принцип преобразования энергии, используемый в компьютерных БП, называется «импульсным» (из переменного напряжения 220 Вольт делается «постоянное», затем, оно преобразуется, понижается до более низких значений импульсным методом). Первые блоки питания для персональных компьютеров имели мощность 60 W (XT), или, скажем, 100-120 W (AT 286). Просто, тогда компьютер предусматривал установку: 1-2 дисководов, одного винчестера (да и сам процессор - «потреблял» очень мало).

Перспективы развития

800 Ватт, 900 Ватт, 1000 Ватт… Блоком питания для ПК, отдающим в нагрузку один Киловатт энергии - никого не удивить. Конечно, цена значительно отличается (от «стандартных» коробок на 450-500 W), однако, такой блок питания обеспечивает достаточный уровень надежности (и – невысокий уровень шума) даже при полной загрузке! Ну, просто чудо.

Если же посчитать, сколько энергии такой компьютер будет потреблять от розетки – получится, что это ни что иное, как эквивалент постоянно включенного на полную мощность утюга. Хорошего такого, по мощности - выше среднего, тяжеленького…

Последнее время, с переходом на новые техпроцессы производства «главных» микросхем для компьютера (центрального процессора, модуля 3-D), движение наметилось как раз «обратное» – то есть, снижение общей мощности при сохранении того же уровня производительности. Два года назад, средний 4-ядерный «проц» потреблял не менее 90 W, сейчас - уже 65 («новый», при этом – быстрее). В любом случае (как 2 года назад, так и сейчас), выбор – за пользователем.

  • Ryzen Threadripper 1950X 3.4Ghz 16core 40Mb 14nm">Ryzen Threadripper 1950X 3.4Ghz 16core 40Mb 14nm
  • Ryzen Threadripper 1920X 3.5Ghz 12core 38Mb 14nm">Ryzen Threadripper 1920X 3.5Ghz 12core 38Mb 14nm
  • Недорогой планшет по характеристикам должен быть таким

Вы можете отметить интересные вам фрагменты текста,
которые будут доступны по уникальной ссылке в адресной строке браузера.

Выбор БП по визуальным признакам – руководство

nemoW 18.05.2005 01:12 | версия для печати | архив

Эта работа была прислана на наш "бессрочный" конкурс статей и автор получил награду – кулер PENTAGRAM FREEZONE QVC-100 Cu+ , коврик от AMD и фирменную футболку сайта.

Версия 2.01 (история изменений )

Чаще всего начинающие пользователи не уделяют достаточно внимания подбору качественных комплектующих, и при выборе корпуса их волнует разве что дизайн его передней панели. Даже если покупатель интересуется мощностью установленного в корпусе блока питания (далее БП), о низком качестве дешевых блоков питания (какие бы красивые циферки на них не были нарисованы) его никто не предупредит. В дальнейшем, при самостоятельном апгрейде заменяется процессор, видеокарта, докупается винчестер... а блок питания остается прежним, и при возникновении проблем со стабильностью машины про его существование вспоминают не сразу. Начинается поиск более мощного БП, но в статьях об БП и по околокомпьютерным конференциям (стараниями отдельных малограмотных и безответственных авторов, а также их читателей) гуляют много на удивление живучих мифов. Часть из них данный материал попытается разоблачить, а заодно показать на примерах отличия дешевого БП от качественного (не обязательно дорогого).

В сети можно найти достаточно много статей по теории компьютерных БП, их тестов и руководств по доработке. Данный материал - попытка дать некие обобщенные рекомендации по выбору БП без тестов, по характерным внешним признакам. Сама идея навеяна этой статьей.

Введение

Не секрет, что энергопотребление (и соответственно тепловыделение) компонентов ПК постоянно растет. TDP (максимальное расчетное тепловыделение) современных настольных платформ составляет в ближайшей перспективе 130Вт (LGA755) и 125Вт (Socket AM2) соответственно. Энергопотребление топовых видеокарт давно вышло за рамки допустимых токов как для разъема AGP (40Вт), так и для PCI Express (75Вт) и достигает 120Вт (такие видеокарты оснащаются разъемами дополнительного питания), а использование двух видеокарт в режиме SLI или CrossFire автоматически удваивает эти требования (списки БП, сертифицированных для SLI и CrossFire систем, смотрите в разделе ). Переход DDR->DDR2 (с уменьшением напряжения с 2.5-2.8В до 1.8-1.9В и опорных частот вдвое) потихоньку компенсируется ростом частот (и напряжений - в оверклокерских модулях).

В середине года и Intel (процессоры на основе новой архитектуры - Conroe), и AMD (процессоры для платформы AMD Live!) собираются представить линейки CPU с пониженным энергопотреблением. Но эти процессоры наверняка станут популярны среди оверклокеров, а эксплуатация комплектующих в нештатных условиях (разгон) делает требования к питанию системы еще более жесткими, что осложняет выбор качественного и относительно недорогого блока питания.

К цифрам энергопотребления различных комплектующих мы еще вернемся, а теперь перейдем к БП, который обеспечивает питанием все компоненты ПК.

Стандарт ATX12V. Разъемы БП

Основной разработчик форм-фактора ATX (и других) – компания Intel. На официальном сайте – formfactors.org – расположены документы, регламентирующие требования и рекомендации производителям корпусов, блоков питания и материнских плат. Требования и рекомендации к БП определяет документ ATX12V Power Supply Design Guide (PSDG) .

ATX12V был создан как дополнение к стандарту ATX и введен при переходе на архитектуру NetBurst (Pentium 4, который уже тогда потреблял заметно больше предшественника). Основное новшество по сравнению с ATX - для получения бо льших мощностей при меньших токах предусматривалось питание VRM (конвертера питания) процессора от +12В, а не от +5В. Совместимость БП с ATX12V определяется наличием 4-pin +12В разъема питания (разъема не должно быть, если максимальный ток по +12В менее 10А). Отклонения напряжений (в пределах соответствующей КНХ ) не должны превышать 5% для положительных и 10% для отрицательных напряжений.


Допустимые отклонения напряжений (ATX12V 2.x)

Краткий обзор (подробнее здесь в разделе "Хроники спецификаций") начнем с версии 1.1 , которая датирована августом 2000г (версий 1.0 , 1.2 нет на официальном сайте, хотя их можно найти на сторонних серверах).


Разъемы БП стандарта ATX12V версии 1.1

Версия 1.3 датирована апрелем 2003г. Относительно v1.1 изменены требования по токам, убрано упоминание стандарта ATX (и напряжения -5В), уточнены требования к обработке сигнала PS_ON#, добавлено упоминание SATA кабеля питания, незначительно увеличены требования к КПД и т.д.


Разъемы БП стандарта ATX12V версии 1.3

ATX12V PSDG версии 2.0 датирован февралем 2003г. Относительно v1.3 произошли значительные изменения по токам (в сторону увеличения потребления по +12В и соответственно уменьшения по +3.3 и +5В), стандартизованы 350Вт и 400Вт блоки (для 300Вт и более рекомендованы 16AWG провода), кабель питания ATX изменен с 20-pin на 24-pin (добавлены +3.3, +5, +12В, COM (он же "ground", "земля") контакты для питания PCI Express устройств), обязателен SATA кабель питания. В БП высшей ценовой категории также могут быть 6-pin разъемы питания (для видеокарт с энергопотреблением больше 75Вт) и 8-pin +12В разъем вместо 4-pin (для будущих процессоров). 24-pin ATX разъем совместим с 20-pin ATX как электрически , так и механически и аналогичен серверному SSI (EPS12V) .

Следущие ревизии продолжают линию, начатую ATX12V PSDG 2.0. В версиях с 2.01 (июнь 2004) по 2.2 (март 2005) произошли следующие изменения: добавлено описание 450Вт блока; ослаблены требования к максимальным токам по линиям +3.3В, +5В (сильно), +12В2 - при этом графики КНХ не изменились; увеличены требования к КПД и токам по +5В standby (дежурного источника).


Разъемы БП стандарта ATX12V версии 2.x


24-pin и 20-pin разъемы питания ATX

SATA разъемы и переходник peripheral power->SATA без линии +3.3В

6-pin разъем питания видеокарт, 2 разъема у блоков с поддержкой SLI

Перекочевавший из серверов в топовые блоки 8-pin разъем +12В и переходник к нему на 4-pin

Энергопотребление ПК

Как было упомянуто в предыдущем разделе, с каждой новой версией стандарта мощность линий +3.3В и +5В снижается, а +12В - увеличивается. Это связано с переводом основных потребителей (процессора и видеокарты) на шину +12В. Развитие требований различных версий стандарта ATX12V к распределению токов (т.е. к нагрузочным способностям) по шинам для 300Вт блоков представлено на табличке ниже (нагляднее изменения видны по графикам кросс-нагрузочной характеристики, КНХ ):

Максимальное потребление +3.3В, ампер +5В, ампер +12В, ампер +5В standby, ампер -5В, ампер -12В, ампер Суммарная мощность по +3.3В и +5В (*), Ватт
Стандарт
ATX 20 30 12 1.5 0.3 0.8 180
ATX12V 1.1 28 30 15 2.0 0.3 0.8 180
ATX12V 1.3 27 26 18 2.0 - 0.8
ATX12V 2.0 20 20 8+14 (**) 2.0 - 0.3
ATX12V 2.2 18 12 8+13 2.5 - 0.3
  • (*) наиболее распространенная схема формирования +3.3В не предполагает собственной обмотки на трансформаторе, +3.3В получается из +5В обмотки через вспомогательный стабилизатор (на насыщаемом дросселе).
  • (**) В блоках питания стандарта ATX12V 2.x один внутренний источник +12В, но по требованиям безопасности он искусственно разделяется на два с раздельной защитой от перегрузки по току (защита необходима только для соответствия стандартам безопасности). При этом линия +12В1 соединяется с разъемами питания ATX и периферийных устройств, а +12В2 с 4-pin разъемом +12В .

Примерное представление (данные неточны) об энергопотреблении основных компонентов можно получить из следующей таблички (информация взята здесь и тут ):

Компонент Макс. энергопотребление (1 шт.), Вт Основное потребление по линии:
Athlon 1400 / Athlon XP 3200+ 72/80 +5В или +12В (*)
Athlon 64 FX-55 / Athlon 64 X2 105/110 +12В
Pentium 4 XE 3.73 / Pentium XE 3.2 110/130 +12В
Модули памяти 5-10 (512Мб PC3200 2.5-2.7В) (**) +3.3В или +5В или +12В
Материнская плата 20-30 +3.3В, +5В, +12В
Видеокарты 20-40 (бюджетные в/карты) AGP в/карты: +3.3В, +5В, +12В PCI Express в/карты: +12В
50-80 (в/карты среднего уровня)
90-120 (топовые в/карты)
Карты расширения 5-10 +5В
HDD 5-30 +5В, +12В (***)
CD/DVD 10-25 +5В, +12В
FDD 5-7 +5В, +12В
Вентиляторы 1-5 (****) +12В
  • (*) AMD (и производители материнских плат) слишком поздно поддержали и ввели ATX12V, поэтому большинство MB Socket A питают VRM процессора от +5В контактов разъема ATX main power (что ведет к их обгоранию при больших токах). Исключение составляют некоторые топовые модели на чипсетах VIA KT600, KT880 и nVidia nForce 2, на которых есть +12B 4-pin разъем – именно такие модели рекомендуются к покупке. Поэтому для большинства систем на устаревающей платформе Socket A с топовыми или разогнанными процессорами (и уж тем более с видеокартами ATI серий 9700-9800, создающими основную нагрузку по шинам +3.3В и +5В) блоки с низкими токами (нагрузочной способностью) по этим шинам не подойдут. К таким БП относятся не только бюджетные, но и соответствующие ATX12V 2.2 блоки, а старые, но качественные вполне справятся. Например, в моей системе (Athlon XP 2.06GHz (Vсore 1.55), Epox 8RDA, Radeon 9800Pro, 3HDD, DVD-RW) трудится Enermax 300W ATX 99г.в. (+3.3В - 20А, +5В - 30А, +12В - 12А, без разъема ATX12V). Энергопотребление других процессоров смотрите здесь или ищите тут в разделе impl(ementation). Кстати, с некоторых пор AMD и Intel перестали публиковать тепловыделение для каждой модели процессоров, и публикуют данные для платформ (группы моделей). Примеры процессоров с низким тепловыделением приведены .
  • (**) Данные по энергопотреблению памяти противоречивы. Любопытный документ AMD #26003, Builders Guide for Desktop/Tower Systems (rus) содержит примеры расчетов энергопотребления типовых систем. В нем 128Мб DDR модулю соответствует 10Вт (2А ток по +5В). В других документах, как по расчетам, так и по результатам измерений приводятся разные, но в разы меньшие цифры (ссылки: 1 ,2 ,3 ,4 ). Следует отметить, что энергопотребление сильно зависит от частоты и напряжения питания модулей, поэтому оверклокерские модули могут потреблять больше и нагреваться гораздо сильнее .
  • (***) В разъеме питания SATA предусмотрена линия +3.3В, но винчестеров, требующих ее для работы, пока нет.
  • (****) Мощность моторов вентиляторов получается умножением заявленного тока на 12 Вольт и связана с количеством оборотов, диаметром и профилем лопастей вентилятора. Для справки: паспортный ток вентилятора боксового кулера P4 3.0ГГц (Prescott) – 0.27А, паспортный ток безымянного 80x80x25 ~2500об. – 0.13A (по результатам измерений: 0.13A – это стартовый ток в пике (насколько его можно измерить дешевым мультиметром), а после набора оборотов потребление составляет 0.09-0.10A, если заблокировать крыльчатку – 0.14-0.17A), а токи более 0.5А характерны только для высокооборотистых монстров .

Суммируя энергопотребление компонентов ПК, получаем, что потребляемая мощность систем среднего уровня (и тем более бюджетных) не превышает 250-300Вт, а для систем с топовыми процессорами и топовыми видеокартами в режиме SLI/CrossFire укладывается в 400-450Вт. На практике тесты энергопотребления современных игровых систем показывают даже несколько меньшую мощность. Вроде бы 300Вт блока должно хватать для средней системы, с чем же связан миф о необходимости БП значительно большей мощности? Во-первых, дело в уже упомянутом распределении нагрузки по шинам - качественный, но маломощный блок старого стандарта просто не потянет новые системы с основным потреблением по линии +12В. Во-вторых, дело в реальной мощности и честности маркировки блока , о которых будет подробнее рассказано ниже.

Для прикидки потребляемой системой мощности есть утилита от Александра Леменкова aka awl – Power Supply Calculator , прочитать о причинах ее разработки (и другую полезную информацию по БП) можно . Она содержит обширную базу по паспортным данным БП, энергопотреблению различных процессоров и видеокарт, может определять компоненты системы.


Кроме того, программа включает стресс-тест для оценки стабильности напряжений при пиковом потреблении процессора. Так как тест использует показатели не заслуживающего доверия аппаратного мониторинга напряжений, для этой цели предпочтительнее использовать S&M (в режиме FPU burn, 100% load) и вольтметр.

Существуют и online-калькуляторы потребления системы (ссылки: 1 ,2 ,3 ). Фатальным недостатком всех калькуляторов является то, что программным способом (без дополнительного оборудования) измерить потребляемую мощность невозможно. Кроме того, базы данных энергопотребления всех упомянутых скриптов содержат завышенные цифры, а PSC давно не обновляется. Поэтому примерное энергопотребление системы стоит считать вручную (ссылки на практические тесты потребления компонентов ПК собраны в соответствующем ).

Введение №2

Актуальна задача выбора БП без тестов, по неким визуально определяемым критериям. Поскольку:

  1. на наш рынок попадают блоки питания малоизвестных производителей и торговых марок;
  2. производителем (особенно нагло - в блоках нижней ценовой категории) завышаются паспортные характеристики БП. Чаще всего маломощные бюджетные блоки маркируют как более мощные, оставляя без изменений компоненты и соответственно максимальные токи;
  3. часто нет возможности взять БП на тесты.

Конечно, только детальный осмотр вкупе с тестами даст точный ответ о возможностях блока, но есть и базовые признаки, по которым можно определить качественный БП. 100% гарантии такой метод не даст, но риск напороться на непотребство сводится к минимуму.

Берем БП в руки

Перед чтением этого раздела рекомендую ознакомиться со статьей Методика тестирования блоков питания Олега Артамонова (в ней описаны устройство и основные компоненты БП), часть вопросов рассмотрена более подробно в работе serj_ – Power Supply .

Взяв БП в руки, можно оценить следующие параметры:

1. Толщина металла (и качество изготовления) корпуса БП

Здесь экономят только в самых дешевых блоках.

2. Вес блока

Часто встречается совет, что блок можно выбирать по весу. Вроде бы верно, но с рядом оговорок. Во-первых, вес бюджетных и недорогих блоков определяется в большей степени толщиной железа корпуса и наличием/отсутствием дросселя пассивного , а не "начинкой". Во-вторых, большой вес блока не гарантирует высоких рабочих характеристик и может применяться лишь как простейший способ оценки качества БП.

Поэтому не стоит ориентироваться на вес сам по себе как на главный признак хорошего БП, это просто элемент комплексной методики. Тем не менее, если на вес БП ощутимо "воздушный", внутри количество и номиналы деталей минимальны. Среднего уровня БП, без пассивного PFC, не может весить менее 0,9-1,2кг. Кстати, купив БП, стоит его взвесить и сверить его реальный вес с указанным в спецификациях (на сайте производителя).

3. Размер и расположение вентилятора(ов) и вентиляционных решеток

80x80 мм вентилятор ставят на заднюю стенку БП, 90x90 или 120x120 – на нижнюю (при направлении взгляда от передней панели корпуса и горизонтальном расположении БП). В дешевых блоках применяется 1 вентилятор 80x80 (со штампованной решеткой), в более дорогих могут стоять 1-2 (очень редко 3) вентилятора типоразмеров от 80x80 до 140x140 мм с проволочной решеткой ("гриль"), которая создает меньше препятствий воздушному потоку (и шума).

Решетки для забора воздуха (вентилятор в БП должен работать на выдув из корпуса) располагаются в блоках с одним 80x80 вентилятором на противоположной вентилятору (передней) стенке (тип 1 ), реже присутствуют дополнительные отверстия на нижней стенке блока (тип 2 ). Возможна простая модификация блока типа 1 для улучшения охлаждения самого БП и уменьшения шума от него. В моделях со 120x120 вентилятором (тип 3 ) на нижней стенке делают частые отверстия для вентиляции на задней стенке блока. Дополнительную информацию об охлаждении БП можно прочитать здесь .

Блоки питания с 80x80 вентиляторами (тип 1 и тип 2)

Блоки питания с 120x120 и 80x80+90x90 вентиляторами (тип 3 и тип 4)

Очевидно, что наиболее эффективно удаляют нагретый воздух из корпуса (но и больше нагреваются при этом) блоки типов 3 и 4, но установка в корпус вентилятора на выдув из процессорной зоны (под БП) рекомендуется в любом случае.

4. Количество и длина кабелей, толщина проводов

Для бюджетных блоков типичны 1 разъем FDD, 4 разъема для периферийных устройств на двух шлейфах, короткие кабели (в том числе и кабель питания ATX), тонкие провода (сечением 20AWG-22AWG). В нормальных БП разъемов больше, кабели длиннее и провода толще (16AWG (очень редко)-18AWG). Минимальная рекомендуемая стандартом длина кабелей - 28 см для кабеля +12В 4-pin и 25 см для остальных кабелей (от БП до первого разъема). В месте выхода пучка проводов из БП должно присутствовать пластиковое кольцо (впрочем, его легко поставить самому), защищающее провода от перетирания. Сетевой (220В) разъем в дешевых блоках обычно дополняется выходным 220В разъемом, в нормальных – тумблером обесточивания БП (т.к. +5В дежурный источник работает и при выключенном ПК).

Так как разъемы периферийных устройств чаще всего предназначаются для ATA устройств (HDD и оптические приводы), резонно для краткости называть их разъемами HDD. Увы, часто их еще ошибочно называют молексами, хотя Molex - это одна из компаний-производителей различных разъемов и кабелей, в том числе для БП.

5. Анализ наклейки с паспортными данными БП

Поскольку в БП нижней ценовой категории (почти всегда, в более дорогих реже) нагло завышаются паспортные характеристики (чаще всего мощность), к этой информации следует относиться скептически. Тем не менее, уже по ней видно, на что претендует производитель блока. Заявленная мощность должна быть не больше суммы произведений номинальных напряжений шин на нагрузки по этим шинам. Следует заострять внимание на том, какой общей мощности по стандарту ATX12V соответствуют заявленные токи, как эта мощность соотносится с заявленной и с солидностью "начинки" БП. Подробнее смотрите здесь .

Взглянув в БП на просвет (через вентиляционные решетки), можно прикинуть:

1. Толщина и профиль радиаторов

Лучше всего – толстые (4-5 мм, у более тонких малая теплопроводность и они неэффективно прогреваются) с развитым оребрением (выдавленные штамповкой "пальцы" вместо ребер хуже, т.к. они имеют малую площадь и соответственно низкую рассеиваемую мощность). Замечание: хотя в новой серии FSP Epsilon /Optima Pro вместо радиаторов - алюминиевые пластины, это никак не влияет на работоспособность БП благодаря доработанной схемотехнике (в том числе высокому КПД).

Пример плохих радиаторов (GIT KP-300UPF)


Еще один пример плохих радиаторов (Codegen 250X1)

Пример качественных радиаторов (Delta DPS-300KBD)

Пример массивных радиаторов (OCZ PowerStream OCZ-470ADJ)

2. Размер фильтрующих (сглаживающих) высоковольтных конденсаторов

От их емкости (пропорциональна размеру) зависит работоспособность блока при пониженном сетевом напряжении, индуктивной нагрузке в сети (пылесос, холодильник), чувствительность к помехам, реакция на кратковременные провалы напряжения и даже нагрев самих конденсаторов.

3. Габариты силового трансформатора

Размер трансформатора определяется его рабочей частотой. Тем не менее, миниатюрный трансформатор может ограничивать максимальную мощность и греться при высокой нагрузке. К сожалению, оценить высоту трансформаторов на фотографиях ниже из-за ракурса невозможно.

Трансформатор из PowerMini PM-300W, из Antec TruePower True430P и из OCZ ModStream OCZ-520 12U - в примерно одинаковом масштабе

4. Диаметр дросселя групповой стабилизации

От диаметра дросселя рабочие параметры БП напрямую не зависят. Другое дело, что меньший дроссель банальным образом дешевле , поэтому дроссели большого диаметра в дешевые блоки не ставят.


Дроссель из безымянного БП 235Вт (не лучше стоят и в "300Вт" китайцах) и из Chieftec (Powerman Pro) HPC 420-102DF

Это относится ко всем компонентам БП : высокая плотность монтажа и солидные размеры и номиналы (и вес) деталей не дают гарантии высоких рабочих характеристик блока, но (в общем случае) чем они выше, тем выше уровень (качество) выполнения и ценовая категория БП .

5. Наличие выходных конденсаторов и выходных дросселей

Если удалось снять крышку

Маловероятно, что при покупке блока питания вам разрешат снять крышку и исследовать внутренности блока. К тому же у большинства небюджетных моделей монтаж достаточно плотный, и разглядеть номиналы одних элементов за частоколом других весьма проблематично. Задача осложняется возможным наличием гарантийных наклеек - как производителя БП, так и розничного продавца. Поэтому данный раздел будет полезен скорее человеку, желающему оценить качество уже купленного БП.

Сняв крышку БП, можно определить:

1. Наличие сетевого фильтра и пассивного/активного PFC

Сетевой фильтр защищает другие подключенные к сети устройства от помех, создаваемых БП.

"Специально обученные перемычки" вместо сетевого фильтра, сетевой фильтр, он же (частично) на отдельной плате

Пассивный PFC (коррекция фактора мощности, не путать с КПД! см. в разделе PFC и тут ) представляет собой массивный (заметно увеличивающий массу БП) дроссель и функционально бесполезен для домашних компьютеров, к тому же ухудшает реакцию блока на резкие изменения нагрузки и сетевого напряжения, может гудеть и греться при большой нагрузке. Совсем другое дело – действительно полезный активный PFC. Впрочем, у некоторых БП с активным PFC возможны пробемы с UPS .


Дроссель пассивного PFC, смонтированный на крышке БП (FSP300-60BTV)


Плата активного PFC (Thermaltake PurePower HPC-420-302DF)

2. Емкость фильтрующих высоковольтных конденсаторов

Конденсаторы (ставятся обычно 2 шт. последовательно на меньшее напряжение (200-250В), что дает удвоение максимального рабочего напряжения и уполовинивание суммарной емкости) должны стоять из расчета не менее 1 мкФ (каждого конденсатора) на 1 Вт (мощности блока). Например, для бюджетных 300Вт блоков типично – не более 2x330мкФ, а в более солидные блоки той же мощности ставят 2x470-2x680мкФ. При наличии активного PFC требования к емкости конденсаторов намного ниже.

3. Номинал выпрямляющего диодного моста

Документацию по компонентам БП (в т.ч. номиналы) можно поискать на alldatasheet.com .

4. Номинал ключевых транзисторов блока

5. Размеры и качество намотки силового трансформатора

От диаметра проводов зависит максимальная мощность и нагрев под нагрузкой. Впрочем, их диаметр определить сложно, поэтому ориентируйтесь на размер трансформатора и аккуратность его намотки.

6. Оптимальность воздушных потоков в БП

Расположение вентилятора(ов) должно соответствовать форме радиаторов (воздушный поток должен проходить через радиаторы, т.е. они должны продуваться), иначе температурный режим БП будет неоптимальным. Массивные радиаторы не всегда нужны, но позволяют сохранять допустимую температуру компонентов БП при малых оборотах вентилятора (и соответственном уровне шума). Необходимым условием в таком случае является высокий (>0.8) КПД блока.

Пояснение: КПД блока определяется соотношением мощности нагрузки к потребляемой блоком из сети активной мощности. Так как значения КПД на практике меньше единицы, оставшаяся мощность рассеивается на ключевых транзисторах, трансформаторе, диодах, дросселях, конденсаторах, что означает их нагрев.

7. Номиналы и производителей диодных сборок

Диодные сборки часто имеют маркировку типа XXYY, где XX – максимальный ток, а YY – максимальное напряжение. По ним легко определить истинную нагрузочную способность блока по отдельным шинам. При этом имейте в виду, что XX – сумма токов двух диодов, поэтому, например, при заявленном токе 30А по +5В в блоке (по-хорошему) должно стоять 2x30А сборки! (На самом деле максимальный допустимый ток несколько больше половины, подробнее см. .) К сожалению, в недорогих блоках такое решение встречается крайне редко.

Лучше, если кроме изолирующей пленки (или слюды) сборки посажены на термопасту. В некоторых особенно бюджетных блоках вместо диодных сборок (и выпрямляющего диодного моста) могут стоять дискретные диоды (чаще по +12В). Такое "решение" обеспечить ток более 3-5А не может в принципе. Что делать с таким "чудом китайской инженерной мысли", написано .

Диодная сборка MOSPEC (30А), диодная сборка LT (10А) и 2 диода вместо сборки (5А)

При перегреве БП (от выхода из строя вентилятора или перегрузке) первыми умирают ключевые транзисторы или диодные сборки. Остальные компоненты (силовой трансформатор, конденсаторы и т.д.) реже приводят выходу блока из строя, но в дешевых БП может сгореть все что угодно. В качестве примера можно привести имевшую место несколько лет назад эпопею с удешевлением дежурного +5В источника в бюджетных блоках, что вело в один прекрасный момент (обычно при включении ПК) к выдаче по всем линиям завышенных в несколько раз напряжений и выгоранию системника целиком (см. здесь и тут ).

8. Качество обмотки дросселя групповой стабилизации

От диаметра проводов обмоток сильноточных шин (лучше, если провод толстый (диаметр >=1мм) или намотано несколько обмоток в параллель) зависит падение выходных напряжений.

9. Емкости и производителей фильтрующих конденсаторов на выходе, наличие дросселей

Влияют на уровень пульсаций и падение (проседание) выходных напряжений. К проводам фильтрующих дросселей применимы те же рекомендации, что и к проводам дросселя групповой стабилизации.

Перемычки вместо фильтрующих дросселей, также обратите внимание на размеры конденсаторов и дросселя групповой стабилизации

Электролитические конденсаторы ряда производителей (GSC , JackCon , Licon, Rulycon (не путать с Rub ycon!) и т.д. ) отличаются крайне низким качеством, они были замечены в эпопее со вздувающимися конденсаторами (eng ). У емкостей этих производителей могут не соответсвовать номиналу реальная емкость, максимальные напряжение и температура, а также внутреннее сопротивление конденсатора (ESR, подробнее см. в разделе "Конденсаторы" и ), которое имеет значение для высокочастотных схем (выходные фильтры БП - для гашения пульсаций на частоте работы трансформатора и ШИМ-контроллера (30-60КГц)). Также обратите внимание на рабочую температуру конденсаторов, она должна быть 105С (для электролитов сетевого фильтра - 85С).

10. Общая аккуратность сборки (пайки) и плотность монтажа

Лучше, если материал печатной платы – стеклотекстолит (более плотный, обычно имеет бледно-телесный цвет), а не гетинакс (однородный с торца, более толстый и темный), который менее устойчив к температуре и расслаиванию (и отслаиванию дорожек). Кроме аккуратности пайки и качества сборки (монтажа элементов), обратите внимание на использование нейлоновых стяжек, термоусадочных трубок, прозрачных пластиковых изолирующих пленок и фиксирующего клея (пример особо некачественной сборки см. тут .

11. Производитель вентилятора, тип его подсоединения, наличие схемы терморегуляции (и термодатчика)

Провода вентилятора могут быть впаяны в плату или подсоединены 2-pin разъемом (в более дорогих блоках возможен 3-pin, в таком случае выводится провод датчика оборотов с разъемом для подключения к материнской плате). Схема термоконтроля (строго говоря, обороты вентилятора могут регулироваться в зависимости не от температуры, а от нагрузки – ступенчато) может быть реализована на отдельной небольшой печатной плате. Датчик температуры (терморезистор) должен прижиматься к радиатору на диодных сборках (или другому сильно греющемуся элементу БП) – от этого зависит быстрота реакции оборотов вентилятора на резкое увеличение токов нагрузки (и температуры компонентов БП).

Свободно торчащий терморезистор (Cybermark ATX350W&P4) и прижатый скобой к радиатору, рядом плата контроля (FSP300-60BTV)

Промежуточные выводы

Подводя итоги: гнущиеся радиаторы, миниатюрные конденсаторы и трансформатор, дискретные диоды вместо сборок, перемычки в роли конденсаторов и дросселей являются однозначным приговором к отправке БП в мусорный бак. Смысла в переделке такого БП нет, придется менять все , и PCB (печатная плата) таких "блоков" может быть не рассчитана на установку нормальной "рассыпухи".

Впрочем, это мнение автора, который не дружит с паяльником и ко всем модификациям относится осторожно. В некоторых случаях минимальная доработка разумна:

Хороший 300W БП (среднего уровня) не может стоить менее 20-25$, поэтому наивно ожидать наличия нормального блока в дешевых корпусах. Водоразделом между бюджетными корпусами с некачественными БП и нормальными корпусами можно считать продукцию Inwin (50-70$), но по возможности стоит отдать предпочтение корпусам Ascot (55-100$) и Chiftec (100$+). Возможны исключения - иногда на наш рынок попадают партии отличных блоков по бросовым ценам. Скажем, 2 года назад такая история произошла с БП Delta, а недавно - с несколькими моделями блоков HIPRO . При этом и те и другие требуют небольшой доработки - в Delta необходима впайка резистора между Power OK и +5V, а в HIPRO HP-P4017F5 шумный вентилятор.

Ценовые категории БП

Для БП нижней ценовой категории характерны:

  • Тонкое, прогибающееся железо корпуса;
  • Некачественный, часто высокооборотистый и шумный (чтобы уменьшить вероятность перегрева и выхода из строя блока под реальной нагрузкой, вплоть до сгорания ) вентилятор 80x80, штампованная решетка вентилятора;
  • Тонкие радиаторы, практически без оребрения (или со штампованными "пальцами");
  • Тонкие провода (20AWG-22AWG), короткие кабели, малое количество разъемов периферийных устройств (4);
  • Тотальная экономия на количестве и номинале деталей;
  • Полупустая PCB, некачественная (неаккуратная) пайка и монтаж;
  • Малый вес (следствие тонкого железа корпуса, хлипких радиаторов и тотальной экономии на количестве и качестве деталей);
  • Сетевой фильтр неполный или отсутствует;
  • Несоответствие паспортных характеристик блока реальной нагрузочной способности (и ни одной из версий ATX12V PSDG).

IPower LC-B250ATX (250Вт)

PowerMini PM-300W (300W)

Для БП средней ценовой категории характерны:

  • Качественное (не прогибающееся) железо корпуса;
  • Вентилятор типоразмера 80x80 или 120x120, с термоконтролем, часто проволочная решетка вентилятора ("гриль");
  • Радиаторы с выраженным оребрением;
  • Положенной толщины провода (18AWG), средние или большие по длине кабели, достаточное количество разъемов периферийных устройств (5-7);
  • Минимум перемычек вместо деталей, возможен монтаж части элементов на отдельных (небольших) печатных платах. Качественная (аккуратная) пайка;
  • Ощутимый вес (следствие нормального железа корпуса, увеличенных радиаторов и малой экономии на количестве и номинале деталей);
  • Сетевой фильтр, возможен пассивный PFC;
  • Соответствие паспортных характеристик блока реальной нагрузочной способности (и одной из версий ATX12V PSDG).
  • Возможен высокий КПД;

Fortron/Source FSP300-60BTV (300Вт)

Macropower MP360AR Ver. 2 (360Вт)

Для БП высшей ценовой категории характерны:

  • Качественное железо корпуса, часто с дополнительным покрытием (краской или лаком);
  • Качественные (известного производителя) вентиляторы с эффективным термоконтролем и проволочными решетками;
  • Массивные радиаторы с обширным, густым оребрением;
  • Положенной толщины провода (16AWG-18AWG), длинные кабели, большое количество разъемов периферийных устройств (7-8), дополнительные разъемы;
  • Очень плотный монтаж, использование разъемных соединений вместо пайки, монтаж части элементов на отдельных печатных платах. Качественная (аккуратная) пайка и монтаж;
  • Большой вес (следствие нормального железа корпуса, массивных радиаторов и отсутствия экономии на количестве и номинале деталей);
  • Сетевой фильтр, возможны: активный PFC, раздельная стабилизация напряжений;
  • Соответствие паспортных характеристик блока реальной нагрузочной способности (возможно превышение требований ATX12V PSDG);
  • Возможен высокий КПД;
  • Прочие нужные и не очень фичи.

Antec TruePower True430P (430Вт)

OCZ Technology ModStream OCZ-520 12U (520Вт)

Вместо заключения

Не стоит принимать описанные в предыдущем разделе ценовые категории как жесткие рамки. На самом деле блоков, в точности соответствующих одному из трех описаний, сравнительно мало. Все остальные располагаются между ними, частично соответствуя одной категории, частично другой.

В бюджетных блоках может быть корпус из нормальной стали, длинные кабели (с достаточным количеством разъемов), распаян сетевой фильтр, стоять проволочная решетка вентилятора и т.д. Эти элементы приближают бюджетные блоки к блокам среднего уровня, но никак не увеличивают реальную мощность БП, не уменьшают пульсации и проседание выходных напряжений под нагрузкой. Поэтому я считаю, что "кодегеноподобные" дешевые БП в принципе нельзя использовать , даже в системах с небольшим суммарным энергопотреблением (где такие блоки вроде бы подходят по токам).

В блоках среднего уровня, с одной стороны, могут быть и активный PFC, и 16AWG провода, и превышение требований стандартов ATX12V. С другой стороны, некоторые качественные блоки (скажем, извлеченные из брендовых машин или случайно попавшие в розницу) могут быть сконструированы под конкретное железо (корпус, материнская плата и общее энергопотребление системы), что может означать короткие кабели, малое количество разъемов HDD и несоответствие ATX12V (нестандартная разводка проводников в разъеме ATX и т.п.). Кроме того, например, у бюджетных моделей FSP (серии ATX и Optima ) при общем высоком качестве исполнения - короткие кабели с малым количеством разъемов, что чаще встречается у бюджетных БП. Сообщают также о поддельных блоках FSP .

Даже покупка дорогого и мощного блока не гарантирует избавления от всех проблем. Попадаются блоки с плохой нагрузочной способностью по одной или сразу по двум основным шинам, с высокими уровнями пульсаций выходных напряжений, не соответствующие ATX12V по КНХ, без активного PFC, без 24-pin ATX разъема, с дребезжащими решетками вентиляторов, со следами некачественной ручной пайки... (примеры см. здесь ).

Надеюсь, что не сильно запугал вас. Удачи в выборе качественного БП!

Иллюстрации взяты с сайтов (в алфавитном порядке):

  • enermax.com.tw
  • fcenter.ru (страницы) - А.В. Головков, В.Б. Любицкий
  • Разгон блока питания
  • БЛОК ПИТАНИЯ (Круглосуточная работа)
Обзоры и тесты:
  • Обзоры и тесты БП и корпусов на fcenter.ru (каталог протестированных БП )
  • Обзоры и тесты БП и корпусов на itc.ua
  • Обзоры и тесты БП и корпусов на ixbt.com
Сертифицированные БП:
  • БП, протестированные Intel на соответствие ATX12V (250-450Вт)
  • БП, протестированные Intel на соответствие ATX12V, предназначенные для использования с high-end видеокартами (450-600Вт)
  • Тесты энергопотребления процессоров Pentium 4 (Prescott 2.8-3.8ГГц) 5xx (E0), 6XX, Pentium 4 EE
  • Тесты энергопотребления процессоров Athlon 64 Newcastle и Winchester (1.8-2.4ГГц)
  • Тесты энергопотребления процессоров Athlon 64 Newcastle, Winchester и Venice (1.8-2.4ГГц)
  • Тесты энергопотребления одно- и двухъядерных процессоров Athlon 64, Athlon 64 X2, Pentium 4, Pentium XE
  • Тесты энергопотребления процессоров Athlon 64 FX-55 (CG), Athlon 64 FX-57 (E4), Pentium 4 3.6ГГц, Pentium XE 3.73
  • Тесты энергопотребления бюджетных процессоров Sempron 3000+ (S754, S939), Athlon 64 3000+, Celeron D 351
  • Диета НЖМД: энергопотребление и тепловыделение - тесты 35 HDD 3,5 дюйма, ATA и SCSI (данные спорны )
Ссылки из конференций:
  • Основные темы форума "Корпуса и блоки питания" (конференция сайт)
  • Путеводитель по разделу "Блоки питания" (iXBT Hardware BBS)
Прочее:
  • Терминология Блока питания
  • Производители корпусов и блоков питания (ссылки)
  • Standard Certification Marks (eng)

Благодарности:

  • Игорь Н. - за терпеливые разъяснения основ схемотехники БП;
  • Российские учёные представили сегнетоэлектрическую MELRAM
  • Ryzen Threadripper получились такими крупными, что водоблокам не хватает одной наклейки
  • Виртуальные спиннеры для android-устройств: примитив из Google Play или средство для снятия стресса?

Стандартный источники питания работает от 220В а также может иметь механический переключатель входного напряжения 110В или 220В AC (переменный ток). Компьютерный блок питания предназначен для преобразования переменного натяжения 220 вольт DC в постоянный ток +12 вольт, +5вольт, +3.3вольт, затем постоянный ток идет на питания компонентов компьютера. 3.3 и 5 вольт обычно используются в цифровых схем, а 12 вольт используется для запуска двигателей дисковода и на вентиляторы.

АТХ 20 и 24 Контактный главный Разъем кабеля питания

24-контактный 12-вольтовый разъем питания ATX может быть подключен только в одном направление в слот материнской плате. Если вы внимательно посмотрите на изображение в верхней части этой страницы, вы увидите, что контакты имеют уникальную форму, которая соответствует только одному направлению на материнская плате. Исходный стандарт ATX поддерживал 20-контактный разъем с очень похожей распиновкой, что и 24-контактный разъем, но выводы 11, 12, 23 и 24 пропущен. Это означает, что более новый 24-контактный источник питания полезен для системных плат, требующих больше мощности. На современных материнских платах может стоять всего 2 типа разъёма 20-контактный основной разъем питания или 24-контактный основной разъем питания.

Многие источники питания поставляются с 20+4 контактными фишками, который совместим с 20 и 24-контактами слотов питания материнских плат. В 20+4 кабель питания состоит из двух частей: 20-контактной, и 4-контактной фишки. Если вы разъедините две части отдельно, тогда можно подключить 20-контактный разъем, а если вы соедините две фишки 20+4 кабеля питания вместе, то у вас получится 24-контактный кабель питания, который может быть подключен к 24-контактному слоту питания материнской платы.

ATX 4-Контактный разъем питания


Molex 4-Контактный периферийный разъем кабеля питания


Четырех контактный периферийный силовой кабель. Он был использован для флоппи-дисков и жестких дисков и до сих пор очень широко используется. Вам не придется беспокоиться об установке это разъема, его нельзя установить неправильна. Люди часто используют термин «4-контактный Molex кабель питания» или «4-контактный Molex для обозначения.

SATA 15 -Контактный кабель питания


SATA был введен, чтобы обновить интерфейс ATA (называемого также IDE) для более продвинутой конструкции. Интерфейс SATA включает как кабель для передачи данных и кабель питания. Силовой кабель заменяет старый 4-контактный периферийный кабель и добавляет поддержку для 3.3 вольт (если полностью реализованы).

8-Контактный EPS и +12 Вольт Разъем питания


Этот кабель изначально создавалась для рабочих станций для обеспечения 12 вольт многократного питания. Но так как времени прошло много процессоры требуют больше питания и 8-контактный кабель часто используется вместо 4-контактный 12 вольт кабель. Его часто называют «ЕРЅ12В» кабель.

4+4 Контактный EPS +12 Вольт Разъем питания


Материнские платы может быть с 4-контактный разъем или 8-контактный разъем 12 вольт. Многие источники питания оснащены 4+4-контактный 12 вольт кабель, который совместим с 4 и 8 контактами материки. А 4+4 кабель питания имеет два отдельных штыря 4 штук. Если вы соедините их вместе, 4+4 кабель питания, то у вас будет 8-контактный кабель питания, который может быть подключен к 8-контактный разъем. Если вы оставите две части отдельно, тогда вы можете подключить один из штекеров 4-контактный в разъем материнской платы.

6-контактный разъем PCI Express (PCIe) силовой кабель Разъем


Этот кабель используется для предоставления дополнительных 12 вольт питания для PCI Express карты расширения. Этот разъем может обеспечить до 75 Вт питания PCI Express.

8-контактный разъем PCI Express (PCIe) силовой кабель разъем


Спецификации PCI Express версии 2.0 выпущена в январе 2007 года добавлена 8 контактный PCI Express с кабелем питания. Это просто 8-контактный версия 6-Контактный PCI Express с кабелем питания. Оба используются в основном для обеспечения дополнительного питания видеокарты. Старший 6-контактный версия официально предоставляет не более 75 Вт (хотя неофициально это, как правило, может дать значительно больше), а новый 8-контактный вариант обеспечивает максимум 150 Вт.

6+2(8) пин PCI Express (PCIe) силовой кабель разъем


Некоторые видеокарты имеют 6-контактный PCI Express с разъемами питания и другие 8-Контактный разъемы PCI Express. Многие источники питания поставляются с 6+2 PCI Экспресс силовой кабель, который совместим с обоими типами видеокарт. В 6+2 PCI Express силовой кабель состоит из двух частей: 6-контактный, а 2-штекерн. Если вы сложите вместе эти две части, то у вас будет полноценный 8-контактный PCI-Express разъем. Но если вы разделите разъем на две части, то вы можете подключить только 6-контактный.

Для ПК имеет разъёмы, которые подключаются к материнской плате, обеспечивая питание для работы материнской платы, процессора, памяти, чипсета, встроенных компонентов (таких как видео, сетевые адаптеры, контроллеры USB и FireWire), а также карт расширения. Данные коннекторы БП имеют первостепенное значение, не только потому, что они являются основным источником питания компьютера, но и потому, что неправильное их подключение может оказать разрушительное воздействие на систему, привести к выходу из строя как материнской платы, так и блока питания. Точно так же, как и физическая форма БП, данные разъёмы обычно устроены таким образом, чтобы соответствовать одной из нескольких отраслевых спецификаций, которые определяют тип разъёмов, их физическую форму, а также предназначение и уровень напряжения на отдельных выходах, расположенных на коннекторе. К сожалению, как и в случае с форм-факторами блоков питания, некоторые производители ПК используют блоки питания с оригинальным типом разъемов или, что ещё хуже, используют стандартные разъёмы с определёнными модификациями отдельных выходов (уровень сигнала, напряжения, отличные от спецификации). Подключение стандартного разъёма от блока питания к такому модифицированному гнезду на материнской плате может привести к выходу из строя материнской платы и блока питания.

Поскольку мы рекомендуем использовать блоки питания стандартных форм-факторов, отсюда вытекает и рекомендация использовать и материнские платы, имеющие разъёмы, полностью соответствующие спецификации блока питания. Лишь используя стандартные комплектующие, вы можете гарантировать себе в дальнейшем низкую стоимость ремонта или обновления ПК.

За долгие годы существовало два основных набора разъёмов питания: AT/LPX и ATX. Каждый из них имел незначительные модификации. Например, стандарт ATX совершенствовался, обзавёлся новыми типами разъемов и модификации к существующим вариантам. В данной части нашей статьи мы поговорим о разъёмах БП, предназначенных для подключения к материнской плате, которые соответствуют отраслевым стандартам, но остановимся и на некоторых решениях, которые стандартам не соответствуют.

Разъёмы для материнской платы блоков питания AT/LPX

Материнские плат стандартов PC, XT, AT, Baby-AT и LPX используют одинаковый набор разъёмов для питания. Блоки питания AT/LPX оснащены двумя разъёмами (P8 и P9) для подключения к материнской плате, каждый из которых имеет по шесть контактов. Эти контакты могут поддерживать ток до 5 А напряжением до 250 В, хотя в ПК используется максимальное напряжение до +12 В. Данные разъёмы изображены на следующих схемах:

Основные разъёмы P8/P9 (также называются P1/P2) для материнской платы на блоках питания AT/LPX. Вид сбоку, расположение контактов

Все блоки питания AT/LPX, в которых применяются разъёмы P8 и P9, требуют их подключения "нога к ноге", то есть чёрные провода, которые обеспечивают заземление, на обоих разъёмах после установки в гнезда на плате должны быть обращены друг к другу. Обратите внимание, что маркировка P8 и P9 полностью не стандартизована, хотя большинство применяла именно такие наименования, так как они использовались в оригинальных блоках питания компании IBM. Некоторые блоки питания вместо P8/P9 используют маркировку P1/P2. Поскольку данные разъёмы, как правило, имеют зажим-фиксатор, который препятствует их установке в противоположные гнезда, наибольшее внимание необходимо уделить правильной ориентации разъёмов и обеспечить точное соответствие контактов на разъёме с гнёздами на плате, чтобы на разъёме с блока питания не осталось свободных контактов. Следуйте принципу "чёрный провод к чёрному" и убедитесь, что разъём зафиксирован точно по центру гнезда. Вам необходимо удостовериться, что на плате не осталось ни одного свободного контакта после установки обоих коннекторов. Правильно установленная вилка разъёма чётко фиксируется на плате и полностью закрывает гнездо. Если после подключения вы видите на гнезде материнской платы свободные контакты или между двумя разъёмами P8 и P9 есть свободное пространство, это говорит о том, что разъёмы были подключены неправильно и может привести к выходу из строя как самой платы, так и всех комплектующих, которые к ней подключены, сразу после включения питания. На следующей схеме показаны разъёмы P8 и P9 (либо маркированные как P1/P2) в правильной ориентации при подключении к материнской плате:


Разъёмы P8 и P9 (P1/P2) блока питания AT/LPX, имеющие правильную ориентацию при подключении к материнской плате

В следующей таблице приводится назначение отдельных контактов разъёмов P8 (P1) и P9 (P2) блока питания AT/LPX:

Контакты разъёмов для материнской платы блока питания AT/LPX
Разъём Контакт Сигнал Цвет
P8 (или P1) 1 Power_Good (+5V) Оранжевый
P8 (или P1) 2 +5V* Красный
P8 (или P1) 3 +12V Жёлтый
P8 (или P1) 4 -12V Синий
P8 (или P1) 5 Ground Чёрный
P8 (или P1) 6 Ground Чёрный
P9 (или P2) 1 Ground Чёрный
P9 (или P2) 2 Ground Чёрный
P9 (или P2) 3 -5 V Белый
P9 (или P2) 4 +5 V Красный
P9 (или P2) 5 +5 V Красный
P9 (или P2) 6 +5 V Красный

* Материнские платы PC/XT первого поколения и блоки питания не требуют данного напряжения, поэтому контакт может отсутствовать на материнской плате, а разъём блока питания может быть лишён как самого контакта (P8 pin 2), так и соответствующего провода на кабеле.

Некоторые производители не использовали стандартные цветовые маркеры, но конфигурация контактов даже в этом случае должна совпадать с приведённой выше.

Хотя старые блоки питания PC/XT не оснащены контактом P8 pin 2, всё равно вы можете использовать их с материнскими платами стандарта AT (или, наоборот, использовать блок питания, имеющий контакт P8 pin 2, с материнской платой без такового). Наличие или отсутствие тока +5 В по данному контакту не существенно или вообще не требуется для системы, так как остающийся контакт +5 В поддерживает необходимую нагрузку). Отметим, что все блоки питания AT/LPX используют одну и ту же конфигурацию контактов на разъёме и нам не известны исключения из данного правила.

Разъёмы для материнской платы блоков питания ATX и ATX12V

Блоки питания, соответствующие первоначальным версиям форм-фактора ATX и ATX12V 1.x, а также варианты, реализованные на базе данных стандартов, имеют следующие три разъёма для обеспечения питания материнской платы:

  • 20-контактный основной разъём питания.
  • 6-контактный дополнительный разъём питания.
  • 4-х контактный разъём питания +12 В.

Основной разъём питания требуется всегда, но два других являются опциональными и могут отсутствовать. Таким образом, блок питания ATX или ATX12V может иметь четыре комбинации набора разъёмов:

  • Только основной разъём питания.
  • Основной и дополнительный разъёмы.
  • Основной разъём и коннектор +12 В.
  • Основной, дополнительный и разъём +12 В.

Наиболее распространёнными являются варианты, включающие только основной разъём питания, а также основной разъём и коннектор +12 В. В большинстве материнских плат имеется гнездо для разъёма +12 В, но отсутствует возможность использовать дополнительный 6-контактный коннектор, или наоборот.

Основной 20-контактный разъём питания.

Основной 20-контактный разъём питания, стандартный для всех БП, соответствующих спецификациям ATX и ATX12V 1.x, оснащён розеткой Molex Mini-Fit Jr., имеющей контакты, которые фиксируются в штырьках на соответствующем гнезде материнской платы. Розетка соответствует спецификации Molex 39-01-2200, а контакты - спецификации 5556. Таким образом, разъём представляет собой розетку с набором контактов, представленных на приведённой ниже фотографии. Цветовая маркировка проводов соответствует рекомендациям к стандарту ATX, однако, производитель может использовать иную маркировку, так как она не является обязательным условием, прописанным в спецификации данного стандарта. На схеме мы изобразили розетку вместе с проводами, что позволяет получить представление, каким образом располагаются провода на другой стороне розетки. Таким образом, мы можете видеть, как именно расположены провода при подключении разъёма к материнской плате:


Основной 20-контактный разъём блока питания стандарта ATX




Схема расположения контактов на разъёме ATX 20-pin
Цвет Сигнал Контакт Контакт Сигнал Цвет
Оранжевый +3.3 V 11* 1 +3.3 V Оранжевый
Синий -12 V 12 2 +3.3 V Оранжевый
Чёрный GND 13 3 GND Чёрный
Зелёный PS_On 14 4 +5 V Красный
Чёрный GND 15 5 GND Чёрный
Чёрный GND 16 6 +5 V Красный
Чёрный GND 17 7 GND Чёрный
Белый -5 V 18** 8 Power_Good Серый
Красный +5 V 19 9 +5 VSB (Standby) Фиолетовый
Красный +5 V 20 10 +12 V Жёлтый

* Контакт Pin 11 может иметь дополнительный оранжевый или коричневый провод, использующийся для возврата тока +3,3 В. БП использует данный провод для контроля тока +3,3 В.

** Контакт Pin 18 не используется, так как напряжение -5 V было удалено из спецификации ATX12V 1.3 и более поздних версий. БП без питания на контакте pin 18 не рекомендуется использовать со старыми материнскими плата, в которых присутствует шина ISA.

Блок питания ATX обеспечивает несколько типов сигнала и напряжений, не предусмотренных на старых блоках питания AT/LPX, а именно: +3.3 V, PS_On и +5V_Standby. Поэтому невозможно каким-то образом доработать БП форм-фактора LPX, чтобы заставить его должным образом работать с материнской платой ATX, несмотря на то, что физически форма и габариты блоков питания ATX и более старых стандартов идентичны.

Вместе с тем, поскольку ATX дополняет с точки зрения набора сигналов и выходных напряжений старые блоки питания LPX, возможно с помощью переходника заставить работать блок питания ATX с материнской платой, предполагающей питание от старых разъёмов AT/LPX.

Одна из наиболее важных проблем, касающихся разъёмов блока питания заключается в том, чтобы обеспечить требуемую мощность без нагревания контактов. Вряд ли вы сможете полноценно пользоваться блоком питания мощностью 500 Вт, если кабели и вилки рассчитаны на нагрузку не более 250 Вт, при превышении которой начнут плавиться. Когда речь заходит о кабелях и разъёмах подключения, их расчётная мощность обычно приводится в амперах и отражает величину проходящего тока, при которой контакт разогревается на 30 градусов Цельсия, если температура окружающей среды составляет 22 градуса. Иными словами, если нормальная температура составляет 22°C, при максимальной нагрузке температура проводников, из которых изготовлен провод и разъём питания, не должна превышать 52°C. Поскольку нормальная температура внутри работающего ПК может достигать 40°C или более высоких значений, максимальный ток через разъём питания может разогреть разъёмы до экстремально высокой температуры.