Разъемы винчестера sata. SATA — интерфейс. Виды разъёмов, скорость передачи данных, ревизии и версии SATA

26.01.2019

ATA (англ. Advanced Technology Attachment , Присоединение по продвинутой технологии) - параллельный интерфейс подключения накопителей (жёстких дисков и оптических приводов) к компьютеру. В 90-е годы XX века был стандартом на платформе IBM PC; в настоящее время вытеснен своим последователем - SATA. Разные версии ATA известны под синонимами IDE , EIDE , UDMA , ATAPI ; с появлением SATA также получил название PATA (Parallel ATA) .

шлейфы ATA с кабельной выборкой: 40-проводной сверху, 80-проводной снизу

Предварительное название интерфейса было PC/AT Attachment («Соединение с PC/AT»), так как он предназначался для подсоединения к 16-битной шине ISA, известной тогда как шина AT . В окончательной версии название переделали в «AT Attachment» для избежания проблем с торговыми марками.

Первоначальная версия стандарта была разработана в 1986 году фирмой Western Digital и по маркетинговым соображениям получила название IDE (Integrated Drive Electronics , «Электроника, встроенная в привод» ). Оно подчеркивало важное нововведение: контроллер привода располагается в нём самом, а не в виде отдельной платы расширения, как в предшествующем стандарте ST-506 и существовавших тогда интерфейсах SCSI и ST412. Это позволило улучшить характеристики накопителей (за счёт меньшего расстояния до контроллера), упростить управление им (так как контроллер канала IDE абстрагировался от деталей работы привода) и удешевить производство (контроллер привода мог быть рассчитан только на «свой» привод, а не на все возможные; контроллер канала же вообще становился стандартным). Следует отметить, что контроллер канала IDE правильнее называть хост-адаптером , поскольку он перешёл от прямого управления приводом к обмену данными с ним по протоколу.

В стандарте АТА определён интерфейс между контроллером и накопителем, а также передаваемые по нему команды.

Интерфейс имеет 8 регистров, занимающих 8 адресов в пространстве ввода-вывода. Ширина шины данных составляет 16 бит. Количество каналов, присутствующих в системе, может быть больше 2. Главное, чтобы адреса каналов не пересекались с адресами других устройств ввода-вывода. К каждому каналу можно подключить 2 устройства (master и slave), но в каждый момент времени может работать лишь одно устройство. Принцип адресации CHS заложен в названии. Сперва блок головок устанавливается позиционером на требуемую дорожку (Cylinder), после этого выбирается требуемая головка (Head), а затем считывается информация из требуемого сектора (Sector).

Стандарт EIDE (Enhanced IDE , т. е. «расширенный IDE» ), появившийся вслед за IDE, позволял использование приводов ёмкостью, превышающей 528 МБ (504 МиБ), вплоть до 8,4 ГБ. Хотя эти аббревиатуры возникли как торговые, а не официальные названия стандарта, термины IDE и EIDE часто употребляются вместо термина ATA . После введения в 2003 году стандарта Serial ATA («Последовательный ATA» ), традиционный ATA стали именовать Parallel ATA , имея в виду способ передачи данных по 40-жильному кабелю.

Поначалу этот интерфейс использовался с жёсткими дисками, но затем стандарт был расширен для работы и с другими устройствами, в основном - использующими сменные носители. К числу таких устройств относятся приводы CD-ROM и DVD-ROM, ленточные накопители, а также дискеты большой ёмкости, такие, как ZIP и магнитооптические диски (LS-120/240). Кроме того, из файла конфигурации ядра FreeBSD можно сделать вывод, что на шину ATAPI подключали даже FDD. Этот расширенный стандарт получил название Advanced Technology Attachment Packet Interface (ATAPI), в связи с чем полное наименование стандарта выглядит как ATA/ATAPI .

Первоначальные расширения ATA для работы с приводами CD-ROM не обладали полной совместимостью и являлись фирменными. В результате, для подключения CD-ROM было необходимо устанавливать отдельную плату расширения, специфичную для конкретного производителя, например для Panasonic (существовало не менее 5 специфичных вариантов ATA, предназначенных для подключения CD-ROM). Некоторые варианты звуковых карт, например Sound Blaster, оснащались именно такими портами.

Другим важным этапом в развитии ATA стал переход от PIO (Programmed input/output , Программный ввод/вывод ) к DMA (Direct memory access , Прямой доступ к памяти ). При использовании PIO считыванием данных с диска управлял центральный процессор компьютера (CPU), что приводило к повышенной нагрузке на процессор и замедлению работы в целом. По причине этого компьютеры, использующие интерфейс ATA, обычно выполняли операции, связанные с диском, медленнее, чем компьютеры, использующие SCSI и другие интерфейсы. Введение DMA существенно снизило затраты процессорного времени на операции с диском. В данной технологии потоком данных управляет сам накопитель, считывая данные в память или из памяти почти без участия CPU, который выдаёт лишь команды на выполнение того или иного действия. При этом жёсткий диск выдаёт сигнал запроса DMARQ на операцию DMA контроллеру. Если операция DMA возможна, контроллер выдаёт сигнал DMACK и жёсткий диск начинает выдавать данные в 1-й регистр (DATA), с которого контроллер считывает данные в память без участия процессора. Операция DMA возможна, если режим поддерживается одновременно BIOS, контроллером и операционной системой, в противном случае возможен лишь режим PIO.

В дальнейшем развитии стандарта (АТА-3) был введён дополнительный режим UltraDMA 2 (UDMA 33 ). Этот режим имеет временные характеристики DMA Mode 2, однако данные передаются и по переднему, и по заднему фронту сигнала DIOR/DIOW. Это вдвое увеличивает скорость передачи данных по интерфейсу. Также введена проверка на чётность CRC, что повышает надёжность передачи информации.

В истории развития ATA был ряд барьеров, связанных с организацией доступа к данным. Большинство из этих барьеров, благодаря современным системам адресации и технике программирования, были преодолены. К их числу относятся ограничения на максимальным размер диска в 504 МиБ, ~8 ГиБ, ~32 ГиБ, и 128 ГиБ. Существовали и другие барьеры, в основном связанные с драйверами устройств, и организацией ввода/вывода в операционных системах, не соответствующих стандартам ATA.

Оригинальная спецификация АТА предусматривала 28-битный режим адресации. Это позволяло адресовать 2 28 (268 435 456) секторов по 512 байт каждый, что давало максимальную ёмкость в 137 ГБ (128 ГиБ). В стандартных PC BIOS поддерживал до 7,88 ГиБ (8,46 ГБ), допуская максимум 1024 цилиндра, 256 головок и 63 сектора. Это ограничение на число цилиндров/головок/секторов CHS (Cyllinder-Head-Sector) в сочетании со стандартом IDE привело к ограничению адресуемого пространства в 504 МиБ (528 МБ). Для преодоления этого ограничения была введена схема адресации LBA (Logical Block Address), что позволило адресовать до 7,88 ГиБ. Со временем и это ограничение было снято, что позволило адресовать сначала 32 ГиБ, а затем и все 128 ГиБ, используя все 28 разрядов (в АТА-4) для адресации сектора. Запись 28-битного числа организована путём записи его частей в соответствующие регистры накопителя (с 1 по 8 бит в 4-й регистр, 9-16 в 5-й, 17-24 в 6-й и 25-28 в 7-й).

Адресация регистров организована при помощи трёх адресных линий DA0-DA2. 1-й регистр с адресом 0 является 16-разрядный, и используется для передачи данных между диском и контроллером. Остальные регистры 8-битные и используются для управления.

Новейшие спецификации ATA предполагают 48-битную адресацию, расширяя таким образом возможный предел до 128 ПтБ (144 петабайт).

Эти ограничения на размер могут проявляться в том, что система думает, что объём диска меньше его реального значения, или вовсе отказывается загружаться и виснет на стадии инициализации жёстких дисков. В некоторых случаях проблему удаётся решить обновлением BIOS. Другим возможным решением является использование специальных программ, таких, как Ontrack DiskManager, загружающих в память свой драйвер до загрузки операционной системы. Недостатком таких решений является то, что используется нестандартная разбивка диска, при которой разделы диска оказываются недоступны, в случае загрузки, например, с обычной DOS-овской загрузочной дискеты. Впрочем, многие современные операционные системы могут работать с дисками большего размера, даже если BIOS компьютера этот размер корректно не определяет.

Разводка Parallel ATA

Контакт

Назначение

Контакт

Назначение

GPIO_DMA66_Detect

Для подключения жёстких дисков с интерфейсом PATA обычно используется 40-проводный кабель (именуемый также шлейфом). Каждый шлейф обычно имеет два или три разъёма, один из которых подключается к разъёму контроллера на материнской плате (в более старых компьютерах этот контроллер размещался на отдельной плате расширения), а один или два других подключаются к дискам. В один момент времени шлейф P-ATA передаёт 16 бит данных. Иногда встречаются шлейфы IDE, позволяющие подключение трёх дисков к одному IDE каналу, но в этом случае один из дисков работает в режиме read-only.

Долгое время шлейф ATA содержал 40 проводников, но с введением режима Ultra DMA/66 (UDMA4 ) появилась его 80-проводная версия. Все дополнительные проводники - это проводники заземления, чередующиеся с информационными проводниками. Такое чередование проводников уменьшает ёмкостную связь между ними, тем самым сокращая взаимные наводки. Ёмкостная связь является проблемой при высоких скоростях передачи, поэтому данное нововведение было необходимо для обеспечения нормальной работы установленной спецификацией UDMA4 скорости передачи 66 МБ/с (мегабайт в секунду). Более быстрые режимы UDMA5 и UDMA6 также требуют 80-проводного кабеля.

Хотя число проводников удвоилось, число контактов осталось прежним, как и внешний вид разъёмов. Внутренняя же разводка, конечно, другая. Разъёмы для 80-проводного кабеля должны присоединять большое число проводников заземления к небольшому числу контактов заземления, в то время, как в 40-проводном кабеле проводники присоединяются каждый к своему контакту. У 80-проводных кабелей разъёмы обычно имеют различную расцветку (синий, серый и чёрный), в отличие от 40-проводных, где обычно все разъёмы одного цвета (чаще чёрные).

Стандарт ATA всегда устанавливал максимальную длину кабеля равной 46 см. Это ограничение затрудняет присоединение устройств в больших корпусах, или подключение нескольких приводов к одному компьютеру, и почти полностью уничтожает возможность использования дисков PATA в качестве внешних дисков. Хотя в продаже широко распространены кабели большей длины, следует иметь в виду, что они не соответствуют стандарту. То же самое можно сказать и по поводу «круглых» кабелей, которые также широко распространены. Стандарт ATA описывает только плоские кабели с конкретными характеристиками полного и ёмкостного сопротивлений. Это, конечно, не означает, что другие кабели не будут работать, но, в любом случае, к использованию нестандартных кабелей следует относиться с осторожностью.

Если к одному шлейфу подключены два устройства, одно из них обычно называется ведущим (англ. master ), а другое ведомым (англ. slave ). Обычно ведущее устройство идёт перед ведомым в списке дисков, перечисляемых BIOS’ом компьютера или операционной системы. В старых BIOS’ах (486 и раньше) диски часто неверно обозначались буквами: «C» для ведущего диска и «D» для ведомого.

Если на шлейфе только один привод, он в большинстве случаев должен быть сконфигурирован как ведущий. Некоторые диски (в частности, производства Western Digital) имеют специальную настройку, именуемую single (т. е. «один диск на кабеле»). Впрочем, в большинстве случаев единственный привод на кабеле может работать и как ведомый (такое часто встречается при подключении CD-ROM’а на отдельный канал).

Настройка, именуемая cable select (т. е., «выбор, определяемый кабелем» , кабельная выборка ), была описана как опциональная в спецификации ATA-1 и стала широко распространена начиная с ATA-5, поскольку исключает необходимость переставлять перемычки на дисках при любых переподключениях. Если привод установлен в режим cable select , он автоматически устанавливается как ведущий или ведомый в зависимости от своего местоположения на шлейфе. Для обеспечения возможности определения этого местоположения шлейф должен быть с кабельной выборкой . У такого шлейфа контакт 28 (CSEL) не подключен к одному из разъёмов (серого цвета, обычно средний). Контроллер заземляет этот контакт. Если привод видит, что контакт заземлён (то есть на нём логический 0), он устанавливается как ведущий, в противном случае (высокоимпедансное состояние) - как ведомый.

Во времена использования 40-проводных кабелей, широко распространилась практика осуществлять установку cable select путём простого перерезания проводника 28 между двумя разъёмами, подключаемыми к диску. При этом ведомый привод оказывался на конце кабеля, а ведущий в середине. Такое размещение в поздних версиях спецификации было даже стандартизировано. К сожалению, когда на кабеле размещается только одно устройство, такое размещение приводит к появлению ненужного куска кабеля на конце, что нежелательно - как из соображений удобства, так и по физическим параметрам: этот кусок приводит к отражению сигнала, особенно на высоких частотах.

80-проводные кабели, введённые для UDMA4, лишены указанных недостатков. Теперь ведущее устройство всегда находится в конце шлейфа, так что, если подключено только одно устройство, не получается этого ненужного куска кабеля. Кабельная выборка же у них «заводская» - сделанная в самом разъёме просто путём исключения данного контакта. Поскольку для 80-проводных шлейфов в любом случае требовались собственные разъёмы, повсеместное внедрение этого не составило больших проблем. Стандарт также требует использования разъёмов разных цветов, для более простой идентификации их как производителем, так и сборщиком. Синий разъём предназначен для подключения к контроллеру, чёрный - к ведущему устройству, серый - к ведомому.

Термины «ведущий» и «ведомый» были заимствованы из промышленной электроники (где указанный принцип широко используется при взаимодействии узлов и устройств), но в данном случае являются некорректными, и потому не используются в текущей версии стандарта ATA. Более правильно называть ведущий и ведомый диски соответственно device 0 (устройство 0 ) и device 1 (устройство 1 ). Существует распространённый миф, что ведущий диск руководит доступом дисков к каналу. На самом деле управление доступом дисков и очерёдностью выполнения команд осуществляют контроллер (которым, в свою очередь, управляет драйвер операционной системы). То есть фактически оба устройства являются ведомыми по отношению к контроллеру.

Статья посвящается моему знакомому,
который купил для домашнего компьютера
хард Seagate Cheetah UWSCSI.

На сегодняшний день существует огромное количество различных технологий и интерфейсов жестких дисков. Количество иностранных и непонятных словечек, засоряющих великий и могучий язык продавцов компьютерной техники все время растет, и, придя в магазин за новым хардом, вы можете услышать столько всего. Например: IDE, ATA, Serial ATA, SCSI, SCSI II, Wide SCSI II, Ultra SCSI II, Ultra Wide SCSI II, Ultra2 SCSI, Ultra160 SCSI, Fibre Channel, IEEE 1394, FireWire, iLink, USB, RAID, 5400rpm, 7200rpm, 10,000rpm, 15,000rpm… Ну как? Ушки уже аплодируют? Так что эта статья должна помочь вам разобраться в том, какое же устройство из тех, что вам попытается всучить продавец, действительно стоит покупать. Надеюсь, решение вы примите правильное.

И учтите. Эта статья не только для великих, супер-пупер компьютерщиков. И даже совсем не для них. Они то все уже знают. Эта статья рассчитана на среднестатического покупателя жесткого диска, который мало что понимает во всех вышеперечисленных терминах. Предположим, вы собираете новый или модернизируете старый компьютер. Задумались о винчестере SCSI, но знаете про этот интерфейс крайне мало, а еще слышали что-то, возможно даже хорошее, про IEEE 1394, но с чем его едят, совершенно не представляете. Тогда вы попали по адресу.

Интерфейсы.

Перво-наперво надо подумать про то, диск с каким интерфейсом вы будете покупать. Твердо остановились на IDE? А как насчет SCSI, IEEE 1394 или USB? В зависимости от интерфейса жесткие диски могут различаться по скоростным характеристикам, стоимости, длине кабелей, гибкости и надежности, да мало ли еще по чему. Так что с интерфейсов мы и начнем.

IDE/ATA

IDE (Integrated Drive Electronics) - это название типа жестких дисков, имеющих интерфейс ATA (AT Attachment). Дешевая электроника IDE в сочетании с параллельной передачей данных ATA позволяет производить жесткие диски, приобретение которых не пустит вас по миру. Тем не менее, не стоит забывать, что ATA не предназначен для внешних подключений, и не любит кабелей длиной более 60см. То есть, такие ATA кабели можно купить, только вот использовать их я вам не советую.

Один канал ATA может поддерживать до двух дисков, первый - master и вторичный - slave. Очень часто, если не сказать, почти всегда, люди ставят на один канал жесткий диск как master и другое, более медленное устройство, типа CD-ROM, как slave. Но так как IDE может обращаться только к одному устройству на канале одномоментно, то таким образом снижается производительность системы в целом. Так что лучше не иметь slave-устройств в принципе. Тем более. Что сейчас все материнские платы имеют по два интегрированных канала IDE, а некоторые (типа любимой мною ABIT BX-133 RAID) и четыре. Просто подключите жесткий диск как master на первый канал, а DVD или CD-ROM как master на второй канал.

Сегодня на рынке присутствуют три основных стандарта IDE дисков: ATA/33, ATA/66 и ATA/100. В данном случае число показывает максимальную пропускную способность в мегабайтах в секунду. Только не забывайте, что для ATA/66 и ATA/100 требуется специальный ATA/66/100 80-контактный кабель, а со стандартным 40-контактным ваш ATA/66/100 диск будет работать как ATA/33. Как правило, такой кабель идет в комплекте со всеми материнскими платами, поддерживающими ATA/66/100. Эти три стандарта называют одним словом UDMA. И хотя это неверно, вам часто придется услышать, UDMA, ATA и IDE в виде взаимозаменяемых понятий.

Все IDE диски должны работать со всеми вариантами ATA. Диск ATA/100 должен отлично функционировать с контроллером ATA/33, а диск ATA/33 должен так же прекрасно работать с контроллером ATA/100. Но, понятно, что работать винчестер будет на скорости самого медленного компонента. В обоих, приведенных случаях это будет скорость ATA/33, то есть максимальная пропускная способность будет равна 33Мб/сек. Иногда можно наткнуться на некоторые несовместимости, типа, когда конкретный диск не желает работать с конкретным кабелем, или два диска от разных производителей не желают сосуществовать на одном канале контроллера. Ну, так электроника штука сложная. Чтобы удостовериться в этом, достаточно разобрать хард и посмотреть, где там внутри размещаются все эти гигабайты. Только такое лучше проделывать с "умершим" хардом, а не с тем, на котором хранится коллекция ваших любимых картинок и текстов про Винни Пуха.

На самом деле разница в производительности между ATA/33, 66 и 100 не так уж велика, так как разговор идет о пиковой пропускной способности, которая в реальной работе достигается крайне редко. Не существует дисков ATA/100 обеспечивающих передачу данных даже в 66Мб/сек, и очень мало таких. Что позволяют передачу в 33Мб/сек. Только кэш память жесткого диска может воспользоваться преимуществами повышенной пропускной способности. Но для этого размер кэша должен быть достаточно большим. А большинство IDE дисков имеет всего 512Кб кэш памяти, и только некоторые, те, что самые дорогие, могут похвастаться кэшом в 2 или даже 4 Мб.

Так что главным недостатком IDE по-прежнему остается малая скорость. Конечно. Современные IDE диски догнали по скоростным характеристикам старые модели SCSI дисков, но с новыми SCSI винчестерами ин все равно не сравниться. Можно приобрести достаточно быстрый IDE диск со скоростью вращения 7200 оборотов в минуту (rpm), но ведь можно купить и SCSI привод со скоростью 15,000rpm, который будет намного быстрее. А еще время наработки на отказ, заявляемое производителями, у IDE дисков гораздо меньше, чем у SCSI дисков. Возможно, это просто маркетинговые меры, но повсеместно бытует мнение, что SCSI устройства надежнее, чем IDE.

Тем не менее, даже диски со скоростью вращения 7200 оборотов на шпинделе, достаточно дороги. Большинство моделей присутствующих на нашем рынке имеют скорость вращения 5400rpm. Такие диски стоят дешевле на 30-40 долларов и производят меньше шума, но производительность у них меньше. Хотя для домашнего использования, это то, что нужно.

Будущее ATA, скорее всего. Лежит на пути перехода к стандарту Serial ATA. Serial ATA будет иметь кабель со всего двумя контактами (один на прием, один на передачу), и должен обеспечить IDE пропускную способность до 1.5Гбит/сек, а возможно и больше. Это вдвое перекрывает пропускную способность ATA/100, у которого контактов в 40 раз больше. Единственной отрицательной стороной Serial ATA является то, что на одном канале может быть только одно устройство, но при наличии контроллера с несколькими каналами это не проблема.

Преимущества
  • Неплохая производительность за малые деньги
  • Широкая распространенность, и, следовательно, совместимость с большинством существующего оборудования.
Недостатки
  • Не самые скоростные диски
  • Жесткое ограничение по длине кабеля
  • Только внутренние

SCSI

SCSI давно стал стандартным интерфейсом для рабочих станций и серверов. И хотя по деньгам SCSI обходится существенно дороже IDE, за эти деньги мы получаем гораздо большую пропускную способность, поддержку большего количества устройств на одном канале, гораздо большую длину кабелей (до 12 метров), поддержку внешних устройств и многозадачность. Немало, не правда ли?

Обычная (иногда говорят "узкая") шина SCSI может нести на себе до 8 устройств, а широкая (wide) до 16. Сам SCSI контроллер занимает один адрес, а остальные 15 оставляет для подключаемых устройств (соответственно на узкой шине для устройств остается 7 адресов). Старшие адреса SCSI имеют больший приоритет. Это делает установку SCSI немного муторной. Обычно лучше дать больший приоритет медленным устройствам, типа CD-ROM, а не жестким дискам.

Существует множество различных вариантов SCSI. Мы о них уже писали, и всем, кто хочет изучить этот вопрос подробно, я рекомендую статью "Интерфейсы SCSI" . Из устройств доступных сейчас на рынке можно назвать Ultra, Ultra2 и Ultra160 SCSI. Ultra SCSI позволяет передачу 20Мб/сек и имеет 8 адресов. Широкая (wide) версия Ultra SCSI поднимает пропускную способность вдвое, то есть до 40Мб/сек. Ultra2 SCSI, известный так же как LVD (Low Voltage Differential) SCSI, имеет пропускную способность 40Мб/сек, и, соответственно, wide версия его дает нам 80Мб/сек. Ultra160 SCSI продолжает традицию удвоения пропускной способности, но бывает только в варианте wide, что дает нам 16 устройств на канале и 160Мб/сек.

SCSI устройства, как правило, обладают совместимостью, что называется, сверху вниз. Правда этого ни кто не гарантирует, но в большинстве случаев, скажем для примера, устройство SCSI-2 будет отлично себя чувствовать на контроллере Ultra2Wide SCSI. Правда при этом бывает, что при наличии на одной шине быстрого и медленного устройств оба начинают работать с максимальной скоростью медленного. А на самом деле, то, как будут вести себя разные SCSI устройства, подвешенные рядом, зависит в основном от контроллера.

Со SCSI часто возникают проблемы, касающиеся установки и первой настройки, особенно у тех, кто проделывает это первый раз. Все эти терминаторы, идентификаторы могут вызвать серьезную головную боль. В то же самое время, все эти проблемы с лихвой окупаются надежностью данного интерфейса. А появление активных терминаторов (к роботам из будущего отношения не имеют) заметно упростило установку SCSI устройств. Так что радуйтесь, раньше было хуже.

Главное преимущество, главная сила SCSI выражается емким иностранным словом high-end, то есть самые быстрые, самые объемистые жесткие диски имеют интерфейс SCSI. Seagate Cheetah с 15,000 оборотов на шпинделе в варианте IDE никогда не производился и вряд ли будет. Ну а способность поддерживать до 15 устройств на одном канале говорит об отличной масштабируемости, что для определенных целей тоже крайне важно.

Мир SCSI настолько обширен, что это тема даже не для одной статьи, поэтому прежде чем поставить жирную точку в данном разделе скажу всего несколько еще слов о будущем.

А будущее SCSI уже расписано как по нотам. Уже появляются первые устройства Ultra320, и следующим шагом будет Ultra640. Сам стандарт SCSI изначально предполагал масштабируемость, и стал масштабируем настолько, что вряд ли что-то может с ним сравниться в этом.

Преимущества
  • Большая производительность
  • Большие объемы
  • Возможность подключения, как внутренних устройств, так и внешних
Недостатки
  • Дороговизна
  • Возможны проблемы при установке

Fibre Channel (оптоволоконный канал)

Fibre channel - это интерфейс, в корне отличающийся от SCSI и IDE. Вообще он ближе к Ethernet и InfiniBand, если это вам что-то говорит. А если нет, то уясните себе следующее, этот интерфейс предназначен не только для того, что бы подсоединять харды и всякую-прочую периферию к системе, а в первую очередь для организации сетей, объединения удаленных друг от друга массивов жестких дисков, и прочих операций требующих высокой пропускной способности в сочетании с большими расстояниями. Fibre channel часто используется для соединения SCSI RAID массивов с сетью рабочей группы либо сервером.

Существующие технологии позволяют пропускную способность Fibre channel в 100Мбит/сек, а теоретический предел данной технологии лежит где-то в районе 1.06Гбит/сек. При этом уже сейчас ряд компаний занят разработкой устройств с пропускной способностью до 2.12Гбит/сек, но это уже следующее поколение интерфейса Fibre channel. На сегодняшнем рынке так же присутствуют решения, когда для достижения супер-большой пропускной способности используется целый ряд каналов Fibre channel одновременно.

В отличие от SCSI, Fibre channel обладает гораздо большей гибкостью. Если SCSI ограничивается всего 12 метрами, то Fibre channel позволяет соединения протяженностью до 10км при использовании оптического кабеля и несколько меньше при использовании относительно недорогих медных соединений, хотя недорогих именно относительно;-).

Преимущества
  • Очень хорошая масштабируемость
  • Очень большие расстояния соединений (до 10км)
  • Сеть из множества рабочих станций может работать с одним RAID массивом
Недостатки
  • Дорого
  • Очень дорого
  • Чем лучше, тем дороже

IEEE 1394

IEEE 1394, он же FireWire (как его назвала Apple), он же iLink (как его назвала Sony), реально становится стандартом для передачи цифрового видео, но так же может использоваться для подключения жестких дисков, сканеров, сетевого оборудования, цифровых камер, и всего, что требует хорошей пропускной способности. В настоящее время FireWire остается достаточно дорогим решением (по крайней мере, для рядового пользователя), но стандарт все больше проникает во все сферы компьютерной периферии и постоянно дешевеет.

FireWire способен поддерживать до 63 устройств на одном канале 400Мбит/сек. А IEEE 1394b, первая попытка серьезного пересмотра FireWire, будет поддерживать пропускную способность в 800Мбит/сек на канал. FireWire обеспечивает большую производительность, но внешние устройства с этим интерфейсом нуждаются в отдельном внешнем источнике питания.

Первые жесткие диски FireWire уже начинают появляться, и уже довольно давно существуют модели, использующие транслятор IDE/FireWire. А вот для видеокамер, сканеров и принтеров этот интерфейс используется уже очень широко. Так же на базе FireWire можно стоить производительные локальные сети. Многие модели компьютеров Apple имеют один или два FireWire порта, о вот на PC этот стандарт пока такого признания не получил.

Самой приятной особенностью FireWire является возможность "горячего" подключения. То есть, можно подключать и отключать FireWire устройства, не выключая компьютер. Но если таким устройством является жесткий диск, то операционная система должна уметь монтировать новые жесткие диски "на лету".

Будущее IEEE 1394 выглядит достаточно оптимистично, учитывая молодость этого стандарта, и уже почти готовую спецификацию 1394b, позволяющую удвоить пропускную способность. А признание данного стандарта дело недалекого будущего, популярность его растет с каждым днем, а цены, соответственно, падают.

Преимущества
  • "Горячее" подключение
  • Высокая пропускная способность
  • Отсутствие разделения устройств по приоритетам
Недостатки
  • Контроллеры жестких дисков стоят пока очень дорого

USB

USB 1 (Universal Serial Bus - Универсальная Последовательная Шина) стандарт получивший за последние несколько лет крайне широкое распространение. Сложно найти компьютер на котором не было бы поддержки USB (если только старый Pentium100). Данный интерфейс имеет два скоростных режима. Первый - "высокоскоростной" - обеспечивает пропускную способность в 12Мбит/сек и длину соединительных кабелей до 5 метров. Второй - низкоскоростной - пропускная способность 1.5Мбит/сек и длина кабелей до 3 метров. Понятно, что для жестких дисков данный стандарт малопригоден из-за своей "тормознутости", а вот для всяких устройств резервного копирования, CD-R, сканеров, сетевых устройств и устройств ввода вполне подходит.

На одном канале USB может присутствовать до 127 устройств, для чего могут использоваться устройства, пропускающие через себя сигнал, либо USB концентраторы. USB имеет, так называемый, мастер-контроллер, так что любой сигнал, передаваемый, скажем, от USB харда к USB CDR должен пройти через контроллер, а уже затем отправиться к требуемому устройству. Это здорово понижает пропускную способность при использовании нескольких USB устройств. Кроме того, USB устройства не могут быть разделяемыми (в сети, например), хотя два компьютера можно соединить между собой USB сетью через USB мост.

Зато, при всех своих минусах, USB позволяет "горячее" подключение. Правда операционная система все равно потребует у вас драйвер нового устройства, но перезагружать компьютер не придется. Хотя и это спорно. Мне, например, недавно попалась сетевая карта USB (удобное средство для подключения к сети опечатанного пломбой компьютера), так подключил-то я ее "по-горячему", а после установки драйверов Windows предложила перезагрузиться. Так что, как говориться, 100% даже морг не дает.

Ну, о будущем USB (по крайней мере, ближайшем) уже все известно. Этим будущим станет USB 2, и не когда-нибудь, а примерно в начале следующего года. USB 2 поднимет планку пропускной способности с 12 до 480Мбит/сек. Вот тогда и можно будет всерьез задуматься о жестком диске с интерфейсом USB 2. А пока в Сети идут дебаты, вытеснит USB 2 FireWire или оба стандарта найдут себя в разных областях компьютерной периферии.

Преимущества
  • Широкая распространенность
  • Низкая стоимость
  • "Горячее" подключение
Недостатки
  • Низкая эффективность для связи между устройствами
  • Низкая скорость (USB 2 это поправит)
  • Малая длина соединительных кабелей

Так выбирать то что?

На самом деле выбор уже определен вашей целью. Если вы собираете домашний компьютер для игр или для офисной работы, то IDE диск даст вам самую лучшую комбинацию цена/производительность. USB хорошо подойдет для внешнего CDR или ленточного накопителя для резервного копирования (если копировать не слишком много). Типа, дешево и сердито, зато переносит с места на место можно сколько угодно. Если вам нужен быстрый внешний диск для подключения к ноутбуку, или для регулярной переноски между несколькими компьютерами, и основным требованием помимо мобильности является производительность, то ваш выбор IEEE 1394. Если речь идет об оснащении серьезной рабочей станции или сервера, где критична надежность и производительность, то лучший выбор - SCSI, особенно в форме RAID, хотя и стоит это ух как кусаче. Ну а если вы формируете кластер автоматизированных рабочих мест, которым необходим высокоскоростной доступ к большому массиву данных, то Fibre channel обеспечит вам скорость, удаленность рабочих мест от массива информации практически не имеет значения. Другая возможность заключается в создании сети Gigabit Ethernet, а для сервера, как правило выбирают решение RAID SCSI, ну или, для некритичных серверов, IDE RAID.

Так что такое RAID?

RAID расшифровывается как Redundant Array of Inexpensive Disks, или если по-русски - Избыточный Массив Недорогих Дисков (ага видел я эти недорогие, у меня весь комп стоит дешевле, чем харды в тех RAID-х). RAID преследует две основные цели, повысить скорость и/или надежность. Существует достаточно много типов RAID, но основные это RAID 0, 1 и 0+1. RAID 0 позволяет объединить объем двух дисков в единое целое, так что операционная система будет видеть их и использовать как один физический диск. RAID 1 позволяет создавать "зеркало", то есть информация пишется сразу как на первый, так и на второй диск, и в случае, если первый, основной, хард "умрет", то все данные на втором будут в целости и сохранности. Ну, и, наконец, RAID 0+1 использует одновременно два описанных выше режима (не забывайте, что при этом требуется как минимум четыре жестких диска, два сливаются в массив, и два используются для "зеркала"). Есть еще другие варианты RAID для повышения надежности хранения информации, типа четности, для проверки целостности данных.

А размер?

У вас что проблемы с определением того, сколько места вам понадобится? 10Гб - это том минимум, который можно сегодня приобрести. Хотя кое-где еще завалялись жесткие диски меньшего размера, но пока вы дочитаете эту статью, пока соберетесь что-то купить, их уже в продаже и не будет. Если вы увлекаетесь собиранием музыки MP3, скачивает множество видеофрагментов из Интернета (тогда у вас выделенная линия:-) и вам понадобится не меньше 20 или 30Гб. Ну а если хотите заняться созданием мультипликации, обработки видео и т.д., то 50-100Гб будет в самый раз.

Все прочитанное не надо принимать близко к сердцу. Криков типа "У меня маленький винчестер, и девочки в классе надо мною смеются" тоже не надо. Пройдет время, винчестер вырастет, и все будет хорошо.

Пишите мне на [email protected] , только не надо просит халявных винчестеров. все равно не дам:-).

В настоящее время, наиболее распространены два стандарта на подключение винчестера к компьютеру. Первый, наиболее распространенный среди домашних и офисных ПК - IDE (Integrated Device Electronics - устройство со встроенным контроллером), также именуемый как ATA (AT Attachment - подключаемый к АТ). Второй чаще всего можно встретить в серверах и высокопроизводительных рабочих станциях - SCSI (Small Computer System Interface, произносится как "скази"). Стоит отметить, что этот интерфейс не является специализированным для дисковых устройств. Помимо жестких дисков и CD-ROM приводов, существует огромная масса устройств, работающих по этому стандарту.

Стандарт интерфейса IDE был разработан по некоторым причинам. Наиболее существенными являются:

Более простой способ подключения винчестера к шине компьютера. Жесткий диск стандарта IDE с одинаковой легкостью можно подключить к высокопроизводительной системной шине компьютера и медленному LPT-порту. Конечно, в последнем случае обмен данными будет гораздо ниже, но такая возможность есть.

Повышение быстродействия. Контроллер диска расположен непосредственно на устройстве, что позволяет передавать минуя длинные интерфейсные провода.

Подключить IDE-устройство к компьютеру можно несколькими способами. Наиболее распространенный - подключение с помощью 40-проводного кабеля (тип интерфейса AT-BUS). Интерфейс 16-битный. Второй тип - PC Card ATA - с помощью PC Card (PCMCIA), также имеющий 16-битный интерфейс. Этот тип используется в основном в переносных компьютерах. Существуют также и XT IDE и MCA IDE, но рассматривать мы их здесь не будем, так как XT уже достаточно стар и встретить его можно очень редко, а MCA используется только для PS/2 машин, которые в нашей стране практически не встречаются.

Кроме подключения, типы интерфейса ATA различаются также и по скорости передачи данных. Основной - CАM ATA (Common Access Method) - стандарт определенный ANSI. Обеспечивает совместимость IDE-устройств на уровне сигналов и команд. Также позволяет подключать до двух устройств на один кабель. Длина кабеля составляет не более 46см.

ATA-2 является расширением спецификации ATA. Имеет два канала, что позволяет подключать до 4-х устройств, поддержка дисков объемом до 8Гб. Поддерживает режимы работы PIO Mode 3, DMA Mode 1, Block mode. Об этих терминах мы поговорим чуть ниже.

Следующим расширением является Fast ATA-2. Отличается только поддержкой DMA Mode 2, что позволяет достичь скорости передачи данных до 13.3 Мбайт/сек и наличием PIO Mode 4. Этот тип наиболее часто встречается в моделях компьютеров на основе 486-x и Pentium процессоров.

ATA-3. Это расширение больше направленно на повышение надежности. Включается в себя улучшенное средство управлением питания и технологию SMART (Self Monitoring Analysis and Report Technology - технология слежения, анализа и предупреждения).

Ultra DMA/33 - скорость обмена данными по шине составляет 33 Мбайт/сек. Кроме этого добавлен контроль передаваемых данных. Относительно недавно появился стандарт UDMA/66, в котором скорость увеличена до 66 Мбайт/сек, и уж совсем недавно объявлен UDMA/100.

Следует отметить, что указанные цифры, являются лишь максимально возможными значениями. Реально скорость передачи данных может быть существенно ниже. Это зависит от частоты вращения дисков, скорости работы электроники, работы памяти и процессора.

Помимо вышеперечисленных типов, существует еще расширение ATAPI (ATA Package Interface). Это расширение предназначено для подключения к интерфейсу ATA накопителей CD-ROM, CDRW, стримеров (накопителей на магнитных лентах), ZIP дисководов и других устройств.

Все вышеперечисленные стандарты между собой электрически совместимы.

Теперь немного поговорим о тех терминах, которые используют при описании режимов работы винчестера. PIO (Programmed Input/Output - программный ввод-вывод) - при работе в этом режиме, процессом обмена информацией с буфером жесткого диска занимается центральный процессор системы. Это, соответственно, отнимает какую-то часть процессорного времени. Существует шесть режимов работы PIO, отличающихся скоростью передачи данных. При PIO Mode 0 скорость составляет всего 3,3 Мбайт/сек. А в случае с PIO Mode 5 уже 20 Мбайт/сек. Режимы с 0 по 2 относятся к обычному ATA, 3 и 4 - к ATA-2, а 5 к ATA-3.

DMA (Direct Memory Access - прямой доступ к памяти). При работе в этом режиме, обмен данными между буфером винчестера и памятью компьютера осуществляется непосредственно контроллером винчестера. Режимы DMA подразделяются на однословные (single word) и многословные (multi word), в зависимости от количества слов передаваемых за один сеанс работы с шиной. В случае однословного режима, максимальная скорость обмена составляет до 8.3 Мбайт/сек. При использовании многословного режима - до 20 Мбайт/сек. Обращения производятся в паузах между обращениями центрального процессора к памяти. Такой режим экономит процессорное время, но несколько снижает скорость обмена.

При использовании однозадачной операционной системы, например MS-DOS более предпочтителен режим PIO, в случае использования многозадачных систем лучше использовать режим DMA. Но в этом случае поддержка этого режима должна осуществляться на уровне драйверов и специальных котроллеров.

LBA (Logical Block Addressing) - адресация логических блоков. Стандарт ATA адресует сектор по классической схеме - номер цилиндра, головки и сектора. Однако, из-за исторически сложившихся причин, BIOS компьютера и операционная система DOS ограничивали количество секторов (63) и цилиндров (1024). В результате этого и появилось ограничение на объем жесткого диска в 540Мб. При режиме LBA, адрес передается в виде линейного абсолютного номера сектора. Винчестер в этом случае сам преобразует его в нужные ему номера цилиндров, головок и секторов. Это позволило обойти ограничения на объем жесткого диска, однако для DOS оно по прежнему составляет 8Гб. Работа устройства возможна только в случае поддержки этого режима драйвером (BIOS) и самим устройством.

Существует также и режим Large - этот режим используется Award BIOS для работы с жесткими дисками до 1Гб, не поддерживающими режим LBA. Использовать этот режим с дисками более 1Гб не рекомендуется.

Block Mode - режим блочного обмена. При использовании обычного режима, винчестер, получив команду на считывание сектора, помещает его в свой буфер, откуда он перемещается в память и ожидает команды на чтение следующего. В случае блочного обмена, винчестер сначала получает количество считываемых сектором, после чего он их считывает в буфер, откуда они перемещаются в память. Разные модели винчестеров имеют разный объем буфера, и соответственно могут считывать разное количество секторов за раз. Максимальный выигрыш от работы в этом режиме возможен только если основная работа идет с объемами данных не меньшим чем количество считываемых секторов. В случае, если фрагменты данных минимальны (например не более одного сектора), использование этого режима сходит на нет.

Напоследок несколько слов о том, как подключаются IDE устройства. На один IDE-кабель можно подключить не более двух устройств. Одно из устройств должно быть выставлено в режим Master (ведущий), а второе - Slave (ведомый). Установка режимов осуществляется с помощью выставления перемычек на самих устройствах. Все современные IDE-устройства, как правило, имеют таблицу установки перемычек. Если у вас два жестких диска, то система будет грузится только с Master устройства. Обычно работа устройства в slave режиме не допускается при отсутствии master устройства. Однако, современные накопители и BIOS позволяют такую работу.

Существует еще один режим - Cable Select. В этом случае, определение master и slave устройства производится автоматически исходя из очередности подключенных разъемов. Для использования этого режима необходим специальный кабель и оба устройства должны быть установлены в CS.

Надеюсь, что эта статья оказалась для вас полезной. В следующей статье мы более подробно остановимся на стандарте SCSI и его модификациях.

Аппаратные средства ПК

А как на счет SCSI, IEEE 1394, USB? Интерфейсы различаются по скорости, цене, длине кабеля, гибкости и по многим другим факторам. Из чего следует, что было бы разумно дать описание интерфейсам жестких дисков.


Интерфейсом накопителей называется набор электроники, обеспечивающий обмен информацией между контроллером устройства (кеш-буфером) и компьютером. В настоящее время в настольных ПК IBM-PC, чаще других, используются две разновидности интерфейсов ATAPI - AT Attachment Packet Interface (Integrated Drive Electronics - IDE, Enhanced Integrated Drive Electronics - EIDE) и SCSI (Small Computers System Interface).

Интерфейс IDE разрабатывался как недорогая и производительная альтернатива высокоскоростным интерфейсам ESDI и SCSI. Интерфейс, предназначен для подключения двух дисковых устройств. Отличительной особенностью дисковых устройств, работающих с интерфейсом IDE состоит в том, что собственно контроллер дискового накопителя располагается на плате самого накопителя вместе со встроенным внутренним кэш-буфером. Такая конструкция существенно упрощает устройство самой интерфейсной карты и дает возможность размещать ее не только на отдельной плате адаптера, вставляемой в разъем системной шины, но и интегрировать непосредственно на материнской плате компьютера. Интерфейс характеризуется чрезвычайной простотой, высоким быстродействием, малыми размерами и относительной дешевизной.

Схемы сопряжения адаптера с накопителями в интерфейсе IDE

Сегодня на смену интерфейсу IDE пришло детище фирмы Western Digital - Enhanced IDE, или сокращенно EIDE. Сейчас это лучший вариант для подавляющего большинства настольных систем. Жесткие диски EIDE заметно дешевле аналогичных по емкости SCSI-дисков и в однопользовательских системах не уступают им по производительности, а большинство материнских плат имеют интегрированный двухканальный контроллер для подключения четырех устройств. Что же появилось нового в Enhanced IDE по сравнению с IDE ?

Во-первых, это большая емкость дисков. Если IDE не поддерживал диски свыше 528 мегабайт, то EIDE поддерживает объемы до 8.4 гигабайта на каждый канал контроллера.

Во-вторых, к нему подключается больше устройств - четыре вместо двух. Раньше имелся только один канал контроллера, к которому можно было подключить два IDE устройства. Теперь таких каналов два. Основной канал, который обычно стоит на высокоскоростной локальной шине и вспомогательный.

В-третьих, появилась спецификация ATAPI (AT Attachment Packet Interface) дающая возможность подключения к этому интерфейсу не только жестких дисков, но и других устройств - стриммеров и дисководов CD-ROM.

В-четвертых - повысилась производительность. Накопители с интерфейсом IDE характеризовались максимальной скоростью передачи данных на уровне 3 мегабайт в секунду. Жесткие диски EIDE поддерживают несколько новых режимов обмена данными. В их число входит режим программируемого ввода-вывода PIO (Programmed Input/Output) Mode 3 и 4, которые обеспечивают скорость передачи данных 11.1 и 16.6 мегабайт в секунду соответственно. Программируемый ввод-вывод - это способ передачи данных между контроллером периферийного устройства и оперативной памятью компьютера посредством команд пересылки данных и портов ввода/вывода центрального процессора.

В пятых, поддерживается режим прямого доступа к памяти - Multiword Mode 1 DMA (Direct Memory Access) или Multiword Mode 2 DMA и Ultra DMA, которые поддерживают обмен данными в монопольном режиме (то есть когда канал ввода-вывода в течение некоторого времени обслуживает только одно устройство). DMA - это еще один путь передачи данных от контроллера периферийного устройства в оперативную память компьютера, от PIO он отличается тем, что центральный процессор ПК не задействуется и его ресурсы остаются свободными для других задач. Периферийные устройства обслуживает специальный контроллер DMA. Скорость при этом достигает 13.3 и 16.6 мегабайта в секунду, а при использовании Ultra DMA и соответствующего драйвера шины - 33 мегабайт в секунду. EIDE-контроллеры используют механизм PIO точно так же, как это делают и некоторые SCSI-адаптеры, но скоростные адаптеры SCSI работают только по методу DMA.

В шестых - расширена система команд управления устройством, передачи данных и диагностики, увеличен кеш-буфер обмена данными и существенно доработана механика.

Фирмы Seagate и Quantum вместо спецификации EIDE используют спецификацию Fast ATA для накопителей, поддерживающих режимы PIO Mode 3 и DMA Mode 1, а работающие в режимах PIO Mode 4 и DMA Mode 2 обозначают как Fast ATA-2.

Интеллектуальный многофункциональный интерфейс SCSI был разработан еще в конце 70-х годов в качестве устройства сопряжения компьютера и интеллектуального контроллера дискового накопителя. Интерфейс SCSI является универсальным и определяет шину данных между центральным процессором и несколькими внешними устройствами, имеющими свой контроллер. Помимо электрических и физических параметров, определяются также команды, при помощи которых, устройства, подключенные к шине осуществляют связь между собой. Интерфейс SCSI не определяет детально процессы на обеих сторонах шины и является интерфейсом в чистом виде. Интерфейс SCSI поддерживает значительно более широкую гамму периферийных устройств и стандартизован ANSI (X3.131-1986).

Сегодня применяются в основном два стандарта - SCSI-2 и Ultra SCSI. В режиме Fast SCSI-2 скорость передачи данных доходит до 10 мегабайт в секунду при использовании 8-разрядной шины и до 20 мегабайт при 16-разрядной шине Fast Wide SCSI-2. Появившийся позднее стандарт Ultra SCSI отличается еще большей производительностью - 20 мегабайт в секунду для 8-разрядной шины и 40 мегабайт для 16-разрядной. В новейшем SCSI-3 увеличен набор команд, но быстродействие осталось на том же уровне. Все применяющиеся сегодня стандарты совместимы с предыдущими версиями


Сопряжение внешних устройств в интерфейсе SCSI

сверху - вниз, то есть к адаптерам SCSI-2 и Ultra SCSI можно подключить старые SCSI-устройства. Интерфейс SCSI-Wide, SCSI-2, SCSI-3 - стандарты модификации интерфейса SCSI, разработаны комитетом ANSI. Общая концепция усовершенствований направлена на увеличение ширины шины до 32-х, с увеличением длинны соединительного кабеля и максимальной скорости передачи данных с сохранением совместимости с SCSI. Это наиболее гибкий и стандартизованный тип интерфейсов, применяющийся для подключения 7 и более периферийных устройств, снабженных контроллером интерфейса SCSI. Интерфейс SCSI остается достаточно дорогим и самым высокопроизводительным из семейства интерфейсов периферийных устройств персональных компьютеров, а для подключения накопителя с интерфейсом SCSI необходимо дополнительно устанавливать адаптер, т.к. немногие материнские платы имеют интегрированный адаптер SCSI.

Из всех узлов компьютера самый ценный, на мой взгляд,- жесткий диск. Почему? Да потому, что на нем хранится то, что не всегда купишь за деньги,- информация. Если, к примеру, выйдет из строя процессор, материнская плата или видеоадаптер, мы либо починим ее, либо купим новую - и забудем об этом неприятном инциденте. Но если сломается винт, на котором была записана нужная информация, это будет не только лишняя порция головной боли, но и двойной удар по карману.

Так что при выборе винчестера нужно дважды все подумать и взвесить. И не только в отношении надежности. Важную роль играет и то, для каких задач будет применяться жесткий диск…

Участники тестирования :

  • Hitachi Deskstar 7K250
  • Maxtor MaXLine III
  • Samsung SpinPoint P80

В 1956 году компания IBM выпустила первый жесткий диск. С тех пор прошло много времени и винчестеры сильно изменились. В процессе эволюции накопителей постоянно улучшались различные характеристики: повышалась скорость и плотность записи, уменьшались габариты и шум, но самое главное - жесткий диск стал доступен широкому кругу пользователей.

Постепенно совершенствовались и интерфейсы винчестеров. До недавнего времени существовало два типа интерфейсов:

  • IDE - недорогое, но и не очень быстрое решение для настольных ПК;
  • SCSI - скоростное и недешевое решение для серверов.

Напомним, что пропускная способность IDE в различных стандартах составляет от 33 Мб/с (ATA33) до 133 Мб/с (ATA133), а у SCSI - 160 Мб/с и 320 Мб/с.

И вот относительно недавно на сцене появился новый персонаж - интерфейс Serial ATA, который представляет собой эволюционное развитие интерфейса ATA (Advanced Technology Attachment) от параллельной к последовательной шинной архитектуре. Новый интерфейс работает во всех операционных системах, так как поддерживает обратную совместимость со старыми стандартами IDE (то есть с Parallel ATA). Пропускная способность нового интерфейса ATA увеличилась и теперь составляет 150 Мб/с (с перспективой развития до 600 Мб/с). Причем, если раньше для подключения IDE-винчестера использовался неудобный 80-жильный кабель, то сейчас для интерфейса Serial ATA достаточно 4-жильного кабеля, который занимает намного меньше места - так что внутри корпуса освобождается место, улучшается циркуляция воздуха.

В последнее время доля SATA-винчестеров на рынке постоянно увеличивается. А если учесть, что на данный момент разница в цене между аналогичными устройствами на базе Serial ATA и Parallel ATA составляет всего 2-5 у.е., можем предположить, что скоро ситуация еще сильнее изменится - и не в пользу IDE.

Для тестирования мы выбрали шесть винчестеров SATA разной емкости от ведущих производителей: Hitachi, Maxtor, Samsung, Seagate и Western Digital. Среди них - накопители на любой вкус и цвет, объемом от 80 до 250 Гб. Короче, есть из чего выбрать.

Что ж, начнем представление участников. В алфавитном порядке.

Hitachi Deskstar 7K250

Серия винчестеров Hitachi Deskstar 7K250 включает пять моделей емкостью 40, 80, 120, 160 и 250 Гб со скоростью вращения 7200 об/мин, 8 Мб кэша и плотностью записи 80 Гб на пластину. В нашем обзоре представлены два устройства этой серии:

  • HDS722580VLSA80 - так называемая «low profile» (низкопрофильная) модель емкостью 80 Гб
  • HDS722525VLSA80 - топовая модель емкостью 250 Гб.

У винчестера емкостью 80 Гб одна пластина и две головки. У его «старшего брата» емкостью 250 Гб - три пластины и шесть головок. Здесь может возникнуть логичный вопрос: как из трех пластин по 80 Гб получается накопитель емкостью 250 Гб? Для ответа заглянем в спецификацию. Ну вот, все понятно: параметр Плотность дорожек (Track density) имеет различные значения для винчестеров разной емкости. У 80-гигабайтного она равна 90 TPI (track per inch - (тысяч) дорожек на дюйм), а у 250-гигабайтного - 93,5 TPI. Если посчитать разницу между этими двумя значениями, получится прирост около 3,8%, что приблизительно соответствует 10 Гб дискового пространства.

HDS722580VLSA80 - так называемая «low profile» модель из серии Deskstar 7K250 емкостью 80 Гб


HDS722525VLSA80 - флагман линейки Deskstar 7K250 емкостью 250 Гб, показавший лучшее время доступа

Даже беглого взгляда на представленные винчестеры достаточно, чтобы увидеть, что они выполнены в разных корпусах, хотя представляют одну и ту же серию Deskstar 7K250. У младшей, «однопластинчатой» модели корпус попроще - отсутствует термораспределительная пластина. Объясняется такой факт, вероятно, экономией: нужно же как-то снизить цену модели начального уровня. Заметим, что такой же «упрощенный» корпус и у 40-гигабайтного устройства, а вот у винчестеров с несколькими пластинами (120 Гб, 160 Гб и 250 Гб) корпуса посерьезней.

Продолжаем внешний осмотр. У накопителей этой серии, в отличие от большинства устройств других производителей, помимо разъема питания Serial ATA есть еще и стандартный 4-контактный (Legacy). Это, несомненно, хоть и небольшой, но все же плюс: в случае необходимости не придется искать переходник. А специально для особо инициативных пользователей на винчестер наклеено предупреждение о том, что желательно использовать только какой-то один разъем питания, а не оба сразу.

Отметим, что, как и у большинства накопителей Serial ATA других фирм, у винчестеров Hitachi Deskstar нет родного SATA-интерфейса. Вместо него используется мост PATA-to-SATA 88i8030 производства Marvell.

В представленных накопителях, как и раньше, используется гидродинамический подшипник, снижающий шум от HDD. Неудивительно, что винчестер с одной пластиной оказался чуть тише своего старшего трехпластинчатого «брата». Кроме того, в новых SATA-винчестерах применена новая технология для вращающих пластины двигателей, благодаря которой эти HDD выделяют меньше тепла, чем их ATA-аналоги. А, как известно, чем меньше устройство перегревается, тем дольше его срок службы.

Maxtor MaXLine III

Винчестеры серии Maxtor MaXLine III позиционируются как более подходящие для установки в серверах и на рабочих станциях не для активного использования, а для хранения резервных копий и других архивов. Согласно спецификации, наилучшей областью применения HDD из этой линейки является архивирование, копирование, складирование, клонирование и подобные действия с любой информацией - архивами баз данных, видеофайлами, музыкальными файлами и др.


7B250S0 - у накопителей серии MaXLine III размер кэша увеличен до 16 Мб

Мы протестировали модель 7B250S0 из серии Maxtor MaXLine III. Это накопитель Serial ATA емкостью 250 Гб, включающий в себя три пластины и шесть головок. Скорость вращения шпинделя - 7200 об/мин, размер кэша теперь равен 16 Мб (!!!). В линейке Maxtor MaXLine III реализован «родной» SATA-интерфейс с поддержкой возможностей SATA II. Производитель обещает, что благодаря применению очереди команд NCQ (Native Command Queuing) в серии MaXLine III в два раза повышается производительность случайного чтения по сравнению с предыдущими поколениями винчестеров MaXLine. Теоретически поддержка механизма NCQ и увеличенный до 16 Мб кэш, конечно, дают винчестеру Maxtor преимущество перед оппонентами, но это еще предстоит проверить.

Samsung SpinPoint P80

Из пяти рассмотренных в данном материале крупнейших производителей винчестеров Samsung освоил производство HDD позже всех. И, надо сказать, первые жесткие диски этой компании были не очень. Поначалу винчестеры Samsung не отличались особой надежностью. Потом, когда эту проблему решили, возникла другая - быстродействие, по которому устройства Samsung уступали конкурентам. Но в последние годы ситуация сильно изменилась. Компании удалось вывести свои винчестеры на новую ступень качества. И теперь жесткие диски Samsung на равных соперничают с устройствами других производителей.


SP1614C - самый тихий SATA-винчестер

В нашем обзоре представлен жесткий диск SP1614C из серии Samsung SpinPoint P80 емкостью 160 Гб с интерфейсом Serial ATA 1.0, скоростью вращения 7200 об/мин, размером буфера 8 Мб и плотностью записи 80 Гб на пластину.

Винчестер включает две пластины и четыре головки. В накопителе используется гидродинамический подшипник, снижающий шум от HDD.

Отметим, что, как и у большинства накопителей Serial ATA других фирм, у винчестера Samsung нет родного SATA-интерфейса. Вместо него используется мост PATA-to-SATA 88i8030 производства Marvell.

Компания Samsung заботится не только о надежности своих винчестеров. Большое внимание уделяется эргономике устройств. В частности, были разработаны и внедрены в новые линейки винчестеров (в том числе и в серию SpinPoint P80) технологии NoiseGuard и SilentSeek, направленные на уменьшение шума от работы HDD: NoiseGuard направлена на подавление акустического шума, а SilentSeek отличается от нее тем, что предназначена для уменьшения акустического шума, возникающего при перемещении исполнительного механизма, а не для подавления излучаемого акустического шума. Сочетание этих двух технологий делает винчестеры Samsung одними из самых тихих.

Seagate Barracuda 7200.7 SATA NCQ

Компания Seagate - ветеран рынка жестких дисков. Можем предположить, что эта компания внедрила наибольшее количество нововведений в области HDD, во всяком случае значимых. Например, Seagate первой выпустила жесткий диск с форм-фактором 5,25“, первые винчестеры со скоростью вращения 7200 об/мин, 10000 об/мин (семейство Cheetah) и 15000 об/мин (Cheetah X15), первый SATA-винчестер (Barracuda ATA V). Словом, Seagate всегда была одним из лидеров среди производителей жестких дисков.

Вот и сейчас эта компания первой разработала и выпустила серию винчестеров с «родным» (без моста) интерфейсом Serial ATA и встроенной поддержкой механизма переупорядочивания команд (NCQ - Native Command Queuing).


ST3160827AS - первый жесткий диск с «родным» SATA-интерфейсом

В нашем обзоре представлен жесткий диск как раз из этой серии (Seagate Barracuda 7200.7 SATA NCQ), емкостью 160 Гб - ST3160827AS. Скорость вращения этого накопителя - 7200 об/мин, размер буфера - 8 Мб, плотность записи - 80 Гб на пластину и интерфейс - естественно, Serial ATA 1.0. Винчестер включает в себя две пластины и четыре головки.

В накопителях Seagate серии Barracuda 7200.7 реализована уникальная система защиты 3D Defense System, которая гарантирует надежность диска и полную сохранность данных. 3D Defense System - это тройная защита: диска (Drive defense), данных (Data defense) и диагностическая (Diagnostic defense). В основе каждой из трех Д-защит лежит несколько технологий.

Кроме того, в винчестерах этой серии применяется технология звукового барьера (SBT - sound barrier technology) для подавления шумов. Эта технология также подразумевает применение в винчестерах более тихого двигателя, разработанного по эксклюзивной технологии компании Seagate - SoftSonic.

Western Digital Caviar SE Serial ATA

Последний (по алфавиту, конечно жеJ) участник нашего забега «веников» представляет хорошо всем известного производителя жестких дисков - Western Digital. В серию винчестеров WD Caviar SE Serial ATA входят SATA-накопители с плотностью записи 80 Гб на пластину, скоростью вращения шпинделя 7200 об/мин и размером буфера 8 Мб (для справки: отличие линейки WD Caviar SE (Special Edition) от WD Caviar состоят в размере буфера: 8 Мб у WD Caviar SE против 2 Мб у WD Caviar).


WD1200JD показал наилучшую среднюю скорость чтения и записи

В тестировании принимает участие жесткий диск WD1200JD емкостью 120 Гб. В его составе - две пластины и три головки. «Родного» SATA-интерфейса нет - используется все тот же мост PATA-to-SATA. Заметим также, что у этого жесткого диска, как и у винчестеров Hitachi, помимо разъема питания Serial ATA есть еще и стандартный 4-контактный (Legacy).

Компания Western Digital уделяет много внимания эргономике устройств, в связи с чем в рассмотренной нами серии внедрены такие собственные технологии WD, как SoftSeek (чем-то похожая на SilentSeek от Samsung) и WhisperDrive, с применением которой разработан двигатель. Последняя технология преследует те же цели, что и SoftSonic от Seagate.

Тесты бывают разные

Пора переходить к тестированию. Для начала опишем конфигурацию стенда, на котором проводились испытания:

  • материнская плата - Intel D915GUX;
  • процессор - Intel Pentium 4 3,6ГГц (HT);
  • оперативная память - 512 Мб;
  • системный HDD - Samsung 40 Гб;
  • операционная система - MS Windows XP Pro ENG (SP1).

Тестовые программы, кстати, бывают разные. Одни измеряют стандартные физические параметры винчестеров, такие как скорость чтения/записи и время доступа. С помощью других измеряют производительность HDD в каких-либо конкретных приложениях - например, в офисных. Представителем последних является WorldBench, но о нем попозже. А сначала мы запустили HD Tach и Aida32 и измерили физические параметры накопителей. Заметим, что результаты двух этих тестов в некоторых случаях довольно серьезно разнились. Но в данном случае нам важнее общая картина (какой из винчестеров по какому из параметров лучше), а не конкретные цифры.

Буферное чтение


При тестировании буферного чтения результат HD Tach нас немного удивил. В лидерах оказался диск Hitachi , хотя остальные отстали не слишком сильно и держались плотной группой - явно уступал только Samsung. Зато результаты Aida32 все ставят на свои места и полностью поддаются логическому объяснению. Явный лидер - Maxtor («родной» SATA-интерфейс и 16 Мб кэша дают о себе знать), за ним Seagate (опять-таки, «родной» SATA-интерфейс), за ними - все остальные.

Время доступа


При тестировании времени доступа сенсаций не произошло. Deskstar 7K250 емкостью 250 Гб уверенно лидировал, показав (в двух тестах) время даже лучше заявленного - достойный продолжатель традиций IBM. Правда, 80-гигабайтный Hitachi несколько отстал от своего «старшого брата». Но в целом все винчестеры показали примерно то время, которое и было заявлено.

Скорость чтения


Однако настоящие сюрпризы начались при тестировании средней скорости чтения. Абсолютным лидером по этому параметру неожиданно оказался Caviar SE производства WD. Второе место уверенно отвоевал 250-гигабайтный Deskstar 7K250 . Очень удивляет низкое место Seagate и Maxtor - не помог им ни «родной» SATA-интерфейс, ни поддержка очереди команд NCQ.

Скорость записи


При тестировании средней скорости записи в наши души закрались сомнения по поводу объективности результатов теста этого параметра в HD Tach. Будем ориентироваться на вторую тестовую программу. В лидерах опять оказался 120-гигабайтный WD Caviar SE , вторым стал Samsung SP1614C , а в хвосте процессии - неожиданно оба представителя Hitachi.

WorldBench

Итак, с абстрактными тестами покончено. Перейдем к тестам реальным: как наши «подопытные» ведут себя в настоящих задачах?

В качестве реальной тестовой программы мы использовали «мегабенчмарк» WorldBench 5. Этот пакет программ применяется для измерения реальной производительности системы во всякого рода популярных приложениях. Для наших тестов мы отобрали такие:

  • ACD Systems ACDSee PowerPack 5.0.0.0025;
  • Adobe Photoshop 7.0.1;
  • Adobe Premiere 6.5;
  • Ahead Software Nero Express 6.0.0.3;
  • Microsoft Office XP with SP-2 (Word, Excel, Outlook, Access, PowerPoint);
  • Microsoft Windows Media Encoder 9.0.0.2980;
  • MusicMatch Jukebox 7.10.1057;
  • Roxio VideoWave Movie Creator 1.5.545.0;
  • WinZip Computing WinZip 8.1 SR-1 (5266).

Для тестирования операционная система устанавливается непосредственно на «подопытный» винчестер. Устанавливаем все необходимые драйверы и пакет WorldBench 5. Заметим, что в состав пакета входит также утилита настройки, которая позволяет без лишних усилий привести основные системные настройки к стандартным значениям. Результатом тестирования является некое абстрактное число.

Прейдем к рассмотрению результатов тестов. Назовем их WB-тесты. Попутно будем описывать, какие задачи выполнялись в каждом приложении.

ACD Systems ACDSee PowerPack 5.0.0.0025

В этом тесте находится и открывается каталог, который содержит 155 файлов формата JPG. Затем все файлы конвертируются в формат PCX. Процедура повторяется несколько раз, причем каждый раз меняется тип формата, в который преобразуются JPG-файлы: GIF, BMP, TIFF, TGA, PNG.

Впереди уверенно держатся оба диска Hitachi, причем, как ни странно, 80-гигабайтный идет впереди 250-гигабайтного. Отрыв последнего от остальных конкурентов понятен: ведь при работе с большим количеством файлов важную роль играет время доступа, а этот показатель у флагмана серии Deskstar 7K250, безусловно, лучше всех. А вот высокий результат 80-гигабайтного Hitachi объяснить непросто. Остальные участники показали приблизительно одинаковый результат.

Adobe Photoshop 7.0.1

В этом тесте открываются два JPG-файла и сохраняются как EPS-файлы, после чего к первому изображению (EPSimage1.eps) и ко второму изображению (EPSimage2.eps) применяются фильтры.

Все винчестеры показали абсолютно одинаковый результат. Из чего следует, что в задачах Photoshop’a жесткий диск особой роли не играет.

Adobe Premiere 6.5

В этом тесте открывается демонстрационный проект Z-TOUR, который содержит различные видеоклипы и аудиоклип. Выполняется рендеринг проекта. Затем проект экспортируется в форматы DVAVI, FLC и FLM, после чего пролистывается приблизительно 500 кадров вперед, а затем назад. Последняя операция (пролистывание) выполняется дважды. Наконец, проект с измененными настройками (широкий экран) экспортируется в формат DVAVI.

Опять, как и в первом тесте (ACDSee), впереди - и с приличным отрывом - «семейка» Deskstar 7K250. В этом тестировании определяющей стала процедура прокрутки кадров, требующая частого обращения к различным областям жесткого диска - и, следовательно, время доступа снова играет одну из решающих ролей. Опять-таки, не совсем понятен «феномен» 80-гигабайтного Hitachi. Почему этот диск снова показывает столь высокий результат? Может быть, просто «за компанию» со «старшим братом»?.

Ahead Software Nero Express 6.0.0.3

В этом тесте создается проект, состоящий из файлов общим объемом около 538 Мб, и записывается восемь изображений (image) этого проекта в формате ISO.

Наконец-то сказал свое веское слово Maxtor MaXLine III. С громадным отрывом от конкурентов этот винчестер занял первое место. Процедура, выполненная в Nero Express, является своего рода клонированием, складированием информации. А на какую область применения ориентировала свой продукт компания Maxtor? Именно на подобную. Так что пока все сходится.

Прочное второе место занял диск WD Caviar SE.

Microsoft Office XP with SP-2

В этом тесте выполнялись различные стандартные офисные операции, такие как копирование, удаление и вставка, поиск и замена, проверка орфографии в документе MS Word, дублирование базы данных MS Access, основные операции и функции MS Excel, отправка электронного письма MS Outlook с вложенным файлом. Все эти задачи выполнялись одновременно, в многозадачном режиме.

Лучшими оказались жесткие диски Seagate и WD. Но в целом все винчестеры показали почти одинаковые результаты. Так что, если речь идет о работе с офисными приложениями, сложно отдать предпочтение какому-то конкретному накопителю - все диски одинаково хороши.

Microsoft Windows Media Encoder 9.0.0.2980

Выполняется преобразование четырех WAV-файлов в формат WMA и одного AVI-файла в формат WMV.

По результатам этого теста на первом месте оказался диск Samsung, хоть и с незначительным отрывом - результаты других винчестеров, в целом, не слишком отличаются.

MusicMatch Jukebox 7.10.1057

В этом тесте выполняется преобразование четырех WAV-файлов в файлы MP3 (160 бит) и переформатирование четырех MP3-файлов к формату 64 бит.

И снова первую позицию занял накопитель производства Samsung. Отсюда вывод: этот представитель серии HDD SpinPoint P80 очень хорошо работает с мультимедийными приложениями - особенно если речь заходит о преобразовании различных видео и аудиоформатов.

Roxio VideoWave Movie Creator 1.5.545.0

В этом тесте открывается AVI-файл, в который добавляются различные готовые элементы, такие как «intro». Затем файл экспортируется в формат DVAVI. Вся процедура повторяется еще дважды - с экспортированием в форматы MPEG1 и MPEG2.

Тут первое место досталось винчестеру производства Western Digital. Но снова говорить о явном превосходстве какого-то устройства нельзя. Все жесткие диски финишировали в этом тесте плотной группой.

WinZip Computing WinZip 8.1 SR-1 (5266)

Создается пять ZIP-архивов (приблизительно по 538 Мб каждый).

Значительно опередив конкурентов, первое место занял Maxtor MaXLine III. Неудивительно: ведь архивирование - одна из рекомендованных областей применения этого накопителя. Относительно Maxtor’а можем предположить, что для некоторых приложений (таких как Nero Express, WinZip и др.), в которых приходится собирать в одно целое большое количество различных файлов, определяющую роль, скорее всего, сыграл родной интерфейс SATA с поддержкой SATA II, а также и вдвое больший (по сравнению с остальными участниками тестирования) размер кэша.

Заключение

Ну что ж, явного победителя мы не выявили. Каждый из тестируемых жестких дисков первенствовал хотя бы в одном тесте.

Если говорить об уровне шума, то, на наше субъективное ухо, самым тихим оказался винчестер Samsung. Что касается надежности накопителей, на сегодняшний день процесс и технология производства вышли на столь высокий уровень качества, что надежность всех представленных HDD не вызывает опасений. Гарантийный срок у всех рассмотренных винчестеров - три года, а у Seagate Barracuda 7200.7 SATA NCQ - целых пять лет.

Так что, пожалуй, при выборе жесткого диска сначала стоит подумать и решить, в какой именно области и для каких именно целей он будет применяться. А потом еще раз внимательно просмотреть наши тесты, хорошенько все взвесить - и тогда уж принимать решение.