Интеллектуальные информационные системы. Понятие интеллектуальной информационной системы

02.03.2019

Интеллектуальная информационная система (ИИС, англ. intelligent system) - разновидность интеллектуальной системы, один из видов информационных систем, иногда ИИС называют системой, основанных на знаниях. ИИС представляет собой комплекс программных, лингвистических и логико-математических средств для реализации основной задачи: осуществление поддержки деятельности человека, например возможность поиска информации в режиме продвинутого диалога на естественном языке.

Особенности и признаки интеллектуальности информационных систем

Любая информационная система (ИС) выполняет следующие функции:

1. Воспринимает вводимые пользователем информационные запросы и необходимые исходные данные.

2. Обрабатывает введенные и хранимые в системе данные в соответствии с известным алгоритмом и формирует требуемую выходную информацию.

С точки зрения реализации перечисленных функций ИС можно рассматривать как фабрику, производящую информацию, в которой заказом является информационный запрос, сырьем - исходные данные, продуктом - требуемая информация, а инструментом (оборудованием) - знание, с помощью которого данные преобразуются в информацию.

Если в ходе эксплуатации ИС выяснится потребность в модификации одного из двух компонентов программы, то возникнет необходимость ее переписывания. Это объясняется тем, что полным знанием проблемной области обладает только разработчик ИС, а программа служит “недумающим исполнителем” знания разработчика. Этот недостаток устраняются в интеллектуальных информационных системах.

Интеллектуальная информационная система - это ИС, которая основана на концепции использования базы знаний для генерации алгоритмов решения экономических задач различных классов в зависимости от конкретных информационных потребностей пользователей.

Для интеллектуальных информационных систем, ориентированных на генерацию алгоритмов решения задач, характерны следующие признаки:

Развитые коммуникативные способности,

Умение решать сложные плохо формализуемые задачи,

Способность к самообучению,

Адаптивность.

Коммуникативные способности ИИС характеризуют способ взаимодействия (интерфейса) конечного пользователя с системой. Сложные плохо формализуемые задачи - это задачи, которые требуют построения оригинального алгоритма решения в зависимости от конкретной ситуации, для которой могут быть характерны неопределенность и динамичность исходных данных и знаний.

Классификация задач, решаемых ИИС

  • Интерпретация данных. Это одна из традиционных задач для экспертных систем. Под интерпретацией понимается процесс определения смысла данных, результаты которого должны быть согласованными и корректными. Обычно предусматривается многовариантный анализ данных.
  • Диагностика. Под диагностикой понимается процесс соотношения объекта с некоторым классом объектов и/или обнаружение неисправности в некоторой системе. Неисправность - это отклонение от нормы. Такая трактовка позволяет с единых теоретических позиций рассматривать и неисправность оборудования в технических системах, и заболевания живых организмов, и всевозможные природные аномалии. Важной спецификой является здесь необходимость понимания функциональной структуры («анатомии») диагностирующей системы.
  • Мониторинг. Основная задача мониторинга - непрерывная интерпретация данных в реальном масштабе времени и сигнализация о выходе тех или иных параметров за допустимые пределы. Главные проблемы - «пропуск» тревожной ситуации и инверсная задача «ложного» срабатывания. Сложность этих проблем в размытости симптомов тревожных ситуаций и необходимость учёта временного контекста.
  • Проектирование. Проектирование состоит в подготовке спецификаций на создание «объектов» с заранее определёнными свойствами. Под спецификацией понимается весь набор необходимых документов-чертёж, пояснительная записка и т.д. Основные проблемы здесь - получение чёткого структурного описания знаний об объекте и проблема «следа». Для организации эффективного проектирования и в ещё большей степени перепроектирования необходимо формировать не только сами проектные решения, но и мотивы их принятия. Таким образом, в задачах проектирования тесно связываются два основных процесса, выполняемых в рамках соответствующей ЭС: процесс вывода решения и процесс объяснения.
  • Прогнозирование. Прогнозирование позволяет предсказывать последствия некоторых событий или явлений на основании анализа имеющихся данных. Прогнозирующие системы логически выводят вероятные следствия из заданных ситуаций. В прогнозирующей системе обычно используется параметрическая динамическая модель, в которой значения параметров «подгоняются» под заданную ситуацию. Выводимые из этой модели следствия составляют основу для прогнозов с вероятностными оценками.
  • Планирование. Под планированием понимается нахождение планов действий, относящихся к объектам, способным выполнять некоторые функции. В таких ЭС используются модели поведения реальных объектов с тем, чтобы логически вывести последствия планируемой деятельности.
  • Обучение. Под обучением понимается использование компьютера для обучения какой-то дисциплине или предмету. Системы обучения диагностируют ошибки при изучении какой-либо дисциплины с помощью ЭВМ и подсказывают правильные решения. Они аккумулируют знания о гипотетическом «ученике» и его характерных ошибках, затем в работе они способны диагностировать слабости в познаниях обучаемых и находить соответствующие средства для их ликвидации. Кроме того, они планируют акт общения с учеником в зависимости от успехов ученика с целью передачи знаний.

Нейронные сети не программируются в привычном смысле этого слова, они обучаются. Возможность обучения - одно из главных преимуществ нейронных сетей перед традиционными алгоритмами. Технически обучение заключается в нахождении коэффициентов связей между нейронами. В процессе обучения нейронная сеть способна выявлять сложные зависимости между входными данными и выходными, а также выполнять обобщение. Это значит, что, в случае успешного обучения, сеть сможет вернуть верный результат на основании данных, которые отсутствовали в обучающей выборке.

  • Поддержка принятия решений. Поддержка принятия решения - это совокупность процедур, обеспечивающая лицо, принимающее решения, необходимой информацией и рекомендациями, облегчающие процесс принятия решения. Эти ЭС помогают специалистам выбрать и/или сформировать нужную альтернативу среди множества выборов при принятии ответственных решений.

В общем случае все системы, основанные на знаниях, можно подразделить на системы, решающие задачи анализа, и на системы, решающие задачи синтеза. Основное отличие задач анализа от задач синтеза заключается в том, что если в задачах анализа множество решений может быть перечислено и включено в систему, то в задачах синтеза множество решений потенциально не ограничено и строится из решений компонент или под-проблем. Задачами анализа являются: интерпретация данных, диагностика, поддержка принятия решения; к задачам синтеза относятся проектирование, планирование, управление. Комбинированные: обучение, мониторинг, прогнозирование.


Введение……………………………………………………………………...……2

    Общие положения ИИС……........................................................................5

    1. Направления развития ИИС и способы их реализации.…………..5

      Свойства и возможности ИИС…………………………………...…9

    Особенности и признаки интеллектуальности информационных систем……………………………………………………………………...13

    Модели представления знаний в ИИС, основанных на правилах…..…14

Заключение…………………………………………………………………….....16

Список использованной литературы…………………………………………...17

Введение.

В современной науке под исследованиями, связанными с моделированием интеллектуальных возможностей человека, понимают научное направление, занятое проблемами синтеза автоматических структур, способных решать сложные задачи информационного обеспечения различных видов человеческой деятельности. Обычно – это задачи, для которых по тем или иным причинам не существует готовых правил или примеров решения. Разработать правила решения такой задачи может человек, обладающий необходимыми знаниями, опытом и интеллектом. Но если создать компьютерную модель, в памяти которой будут содержаться знания такого человека, запрограммированы его опыт и интеллектуальные способности, необходимые для решения конкретной задачи, то этой моделью можно будет пользоваться для решения многих задач, подобных уже решенной. Более того, эта модель может быть адаптирована для применения и в других проблемных ситуациях.

Среди таких задач наиболее трудными и актуальными считаются задача разработки средств общения человека с компьютерной системой, моделирующей интеллект человека, на естественном языке и задача автоматического машинного перевода с одних языков на другие при условии точной передачи смыслового и эмоционального аспектов. Дело в том, что, по

мнению многих выдающихся лингвистов, интеллектуальная деятельность человека (практически в любых ее аспектах) самым непосредственным образом связана с функционированием языка и мышления. Только с помощью абсолютно естественных средств общения человека с автоматом, исполняющим компьютерную программу, станет возможным создание систем, адекватно моделирующих человеческий интеллект и такие его свойства, как мышление, интуиция, сознание и подсознание… Такие системы в современной информатике получили название интеллектуальных информационных систем (ИИС).

Современное состояние фундаментальных и прикладных исследований в области интеллектуальных информационных систем позволяет считать, что их результаты стали достаточно определенными. Это означает, что сложилась сравнительно устойчивая система понятий, появились методология проектирования, построения и внедрения, определились типовые структуры таких систем и их компонентов.

Принято считать, что интеллектуальной задачей является отыскание неизвестного алгоритма решения некой практической или теоретической проблемы, универсального на множестве свойственных этой проблеме исходных данных. Требуется только, чтобы исполнитель,

решающий задачу, был способен выполнять те элементарные операции, из которых складывается процесс, и, кроме того, чтобы он педантично и аккуратно руководствовался предложенным алгоритмом. Такой исполнитель (человек или автомат), действуя чисто машинально, может успешно решать любую задачу рассматриваемого типа. Поэтому представляется совершенно естественным исключить их класса интеллектуальных такие задачи, для которых существуют стандартные методы решения. Примерами таких задач

могут служить чисто вычислительные задачи:

Решение системы линейных алгебраических уравнений;

Численное интегрирование дифференциальных уравнений;

Задачи аппроксимации эмпирических данных и т.п.

Для решения подобного рода задач имеются стандартные алгоритмы, представляющие собой определенную последовательность элементарных операций, которая может быть легко реализована в виде программы для вычислительной машины. В противоположность этому для широкого класса интеллектуальных задач, таких, как распознавание образов, логические выводы и сложные в логическом отношении игры (например, игра в шахматы), доказательство теорем и т. п., такое формальное разбиение процесса поиска решения на отдельные элементарные шаги напротив часто оказывается весьма затруднительным, даже если само их решение несложно.

Таким образом, возникает некоторое основание к тому, чтобы считать понятие интеллекта эквивалентным понятию универсального сверхалгоритма, который способен создавать алгоритмы решения конкретных задач.

    Общие положения ИИС.

Развитие систем информационного обеспечения различных видов деятельности человека, исторически можно представить этапами:

«информационные системы» (ИС), «автоматизированные информационные системы» (АИС), «интеллектуальные информационные системы» (ИИС).

Интеллектуальная информационная система - это компьютерная модель

интеллектуальных возможностей человека в целенаправленном поиске , анализе и синтезе текущей информации об окружающей действительности для получения о ней новых знаний и решения на этой основе различных жизненно важных задач .

Каждому из этих этапов соответствует своя информационная модель предметной области. Для первых информационных систем такой моделью служили каталоги или классификаторы, для АИС это были массивы информации, организованные в виде баз и банков данных, а для ИИС модель предметной области представлена системой структурированных данных, получившей название базы знаний. Информационные системы, основанные на каталогах, создавались в основном для реализации в той или иной мере механизированного поиска необходимой информации. АИС, основанные на

высоко организованных базах данных, позволяли не только вести автоматизированный и многоаспектный поиск информации, но и достаточно сложную обработку найденной информации, ее организованное хранение и передачу. ИИС, основанные на базах знаний, должны (в дополнение к возможностям АИС) решать задачи, получившие название «интеллектуальных».

Развитие ИИС на современном этапе идет в соответствии с тремя направлениями исследований, целью которых – моделирование возможностей человека в решении интеллектуальных задач.

Первое направление объектом исследований рассматривает структуру и механизмы работы мозга человека, а конечной целью - раскрытие тайн мышления. Необходимыми этапами исследований в этом направлении являются построение моделей на основе психофизиологических данных, проведение экспериментов с ними, выдвижение новых гипотез относительно механизмов интеллектуальной деятельности, совершенствование ранее созданных моделей и т. д.

Второе направление в качестве объекта исследования рассматривает

искусственную интеллектуальную систему. Здесь речь идет о моделировании

интеллектуальной деятельности с помощью вычислительных машин или автоматов иного принципа действия. Целью работ в этом направлении является создание алгоритмического и программного обеспечения вычислительных таких машин, позволяющего решать некоторые виды интеллектуальных задач так же, как их решил бы человек.

Третье направление ориентировано на создание человеко-машинных, или, как еще говорят – интерактивных, интеллектуальных систем, являющих собой симбиоз возможностей естественного и искусственного интеллекта. Важнейшими проблемами в этих исследованиях является оптимальное сочетание возможностей человека и искусственной системы, моделирующей интеллектуальные возможности человека, и организация семантически безупречного диалога между человеком и такой системой.

В рамках каждого из направлений существуют различные подходы к построению ИИС. Эти подходы не являются эволюционными этапами, они появились почти одновременно (в историческом плане) и самостоятельно существуют и развиваются в настоящее время. Более того, никогда не было достаточных оснований к тому, чтобы безоговорочно предпочесть какой-то подход остальным.

Практически каждая ИИС, основанная на логическом подходе, представляет собой машину для решения задач логических выводов и доказательства теорем. При этом исходные данные хранятся в базе знаний в виде аксиом и правил построения логического вывода как отношений между этими данными. Кроме того, каждая такая машина имеет блок генерации цели (формулировка задачи или теоремы), а система вывода (универсальный

решатель) должна решить данную задачу или доказать теорему. Если сформулированная цель достигнута (теорема доказана), то последовательность примененных правил образует цепочку действий, позволяющих решать любые задачи подобного типа. Мощность такой

системы определяется возможностями генератора целей и возможностями машины доказательства теорем (универсального решателя). Доказательство может потребовать полного перебора всех возможных вариантов решений.

Поэтому данный подход требует эффективной реализации вычислительного процесса и хорошо «работает» при сравнительно небольшом объеме базы знаний.

Физический подход объединяет методы моделирования интеллектуальных возможностей человека с помощью компьютера и различных физических устройств. Одной из первых таких попыток был перцептрон Фрэнка Розенблатта. Структурной единицей перцептрона (как и большинства других вариантов такого моделирования) является компьютерная модель нейрона – нервной клетки. Позднее возникли модели,

которые получили известность под термином "искусственные нейронные сети" (ИНС). Эти модели относятся к структурам, основанным на примерах. Они используют как различные по физической реализации модели нервных клеток, так и различные топологии

связей между ними.

Широкое распространение получило в последние годы эволюционное

моделирование. Принцип, лежащий в основе этого метода, заимствован у природы – у живых организмов и систем. Во многих источниках он определяется как воспроизведение процесса естественной эволюции с помощью специальных алгоритмов и программ.

Еще одним, широко используемым методом этого подхода к построению ИИС является имитационное моделирование. Оно связано с классическим для кибернетики, одним из ее базовых понятий - "черным ящиком" (ЧЯ). Так называют устройство, информация о внутренней структуре и содержании которого отсутствуют полностью, но известна матрица обязательного соответствия сигналов на входе в него и сигналов на его выходе. Объект, поведение которого имитируется моделью, как раз и представляет собой такой "черный ящик". Нам не важно, что у него внутри и как он функционирует, главное, чтобы наша модель в аналогичных ситуациях вела себя точно так же. Так можно моделировать важное свойство человека - способность копировать то, что делают другие, не задумываясь, зачем это нужно. Зачастую эта способность экономит ему массу времени, особенно в начале его жизни. Основным недостатком имитационного подхода является низкая информационность о побудительных мотивах поведения моделей, построенных с его помощью.

1.2. Свойства и возможности ИИС.

Основным предназначением ИИС изначально было и будет исполнение роли «усилителя» интеллекта человека, дающего возможность решения проблемы, которая требует таких знаний, опыта и образа мышления, которых он не сумел, не считал нужным или не мог приобрести до того, как перед ним него возникла эта проблема. Чтобы ИИС любой типологической категории (ЭС, НС или гибридная) отвечала в полной мере такому назначению, необходимо, чтобы она обладала качествами (свойствами и возможностями) идеального помощника человека: честностью, понятливостью, восприимчивостью, дееспособностью, исполнительностью. Если перейти к понятиям более конкретным, то в терминах теории и практики построения ИСС эти качества трактуются как:

Коммуникативность, трактуемая как многообразие доступных всем категориям пользователей способов общения с системой;

- универсальность по отношению к множеству задач, составляющих проблемную область, в пределах задач которой должна функционировать стстема;

- « умение» обучаться на основе приобретаемого опыта и знаний, приспосабливаясь к

изменению условий решения проблемы;

- « умение» перестроиться при изменении принципиальных положений (концепций) предметной (а значит - и проблемной) области.

Коммуникативные качества ИИС определяются наличием в ее структуре аппаратно-программных средств, обеспечивающих возможность любому пользователю системы общаться с ней естественным для него способом. Это означает, что пользователь системы не должен «выбирать выражения», обращаясь к ней с тем или иным заданием, а делать это в привычной и удобной для себя манере. А система должна совершенно точно распознать смысл задания и приступить к его выполнению. Если задание выполнено, то система должна сообщить пользователю, как было получено решение и почему оно является именно таким. Коммуникативные функции реализуются в виде уточняющего диалога. Для того, чтобы диалог был возможен при выборе пользователем того или иного способа общения с системой (речевое обращение, запрос в виде текста, графический образ), в ее составе должны быть соответствующие аппаратные и программные средства.

Аппаратные средства преобразуют аналоговые сигналы в машинные цифровые коды (при вводе запроса) и цифровые коды в аналоговый сигнал (при выводе ответа). Программные средства осуществляют необходимую обработку информации, представленной в запросе к системе. Обработка запроса, изложенного на естественном языке (ЕЯ-запроса), предусматривает его лингвистический анализ (распознание синтаксической структуры и морфологии текста запроса), семантический анализ ЕЯ-запроса (распознание его смысла), лингвистическую и семантическую интерпретацию запроса в понятиях и терминах внутрисистемного языка описания знаний и описания всевозможных отношений между понятиями. После такого «перевода» запроса на «свой» язык, система решает поставленную в нем задачу. Эту функцию выполняет комплекс программ, реализующий алгоритмы процедур и правил, составляющих процедурную компоненту БЗ системы. Решив поставленную пользователем задачу, система должна представить результаты в том виде, как это было указано в запросе на ее решение: в виде речевого сообщения, текста, схемы, анимации или трехмерного изображения. Для этого необходимо преобразовать результаты решения задачи из представления на внутрисистемном языке в представление на естественном языке, языке графики или анимации. Такие преобразования осуществляются сначала программами семантической интерпретации результатов решения в понятиях и терминах естественного языка, языка графики или языка анимации, а затем программами лингвистического синтеза результатов решения (ответа системы на запрос) на естественном языке пользователя или на языке графики или анимации.

Универсальность системы («умение» решать любые интеллектуальные задачи того класса, который определяется проблемной областью) обеспечивается наличием в структуре ее базы знаний соответствующей информации. Как уже было отмечено, база знаний системы состоит из декларативных и процедурных знаний. Первая компонента представлена информационной моделью предметной области, к которой относится класс

задач, а вторая - набором логических процедур и правил, необходимых и достаточных для решения задач данного проблемного класса. Эти две компоненты, будучи информационно согласованными и совместимыми, должны обеспечивать решение любой типовой задачи данного класса. Если условия какой- либо задачи потребуют знаний или процедур, которых нет в базе системы, то факты (знания) и алгоритмы анализа и синтеза, которые в ней имеются, должны позволить получить их и решить задачу.

Способность системы к обучению и самообучению обеспечивается средствами анализа и обобщения имеющихся знаний и синтеза на этой основе новых знаний. Такие средства могут быть комплексными, то есть программно-аппаратными. Программная компонента ИИС, основанной на правилах, решает задачи анализа и синтеза знаний с помощью логических и вычислительных алгоритмов, реализующих методы правдоподобного вывода, или с применением известных правил решения стереотипных

задач. Аппаратно-программная компонента ИИС, основанной на аналогиях (примерах).

На рис.1 представлена обобщенная функциональная структура ИИС в ее принципиальной трактовке. Диалоговые средства (ДС) обеспечивают взаимодействие пользователей с системой и организуют работу других блоков. Функции ДС обеспечиваются БЗ, в которой содержится информация о пользователях ИИС, а также средствами лингвистического анализа (ЛА), лингвистического синтеза (ЛС) и средствами семантической интерпретации (СИ).

Обобщённая функциональная структура ИИС.

Рис. 1

2. Особенности и признаки интеллектуальности информационных систем.

Любая информационная система (ИС) выполняет следующие функции:

    Воспринимает вводимые пользователем информационные запросы и необходимые исходные данные.

    Обрабатывает введенные и хранимые в системе данные в соответствии с известным алгоритмом и формирует требуемую выходную информацию.

С точки зрения реализации перечисленных функций ИС можно рассматривать как фабрику, производящую информацию, в которой заказом является информационный запрос, сырьем - исходные данные, продуктом - требуемая информация, а инструментом (оборудованием) - знание, с помощью которого данные преобразуются в информацию.

Для интеллектуальных информационных систем, ориентированных на генерацию алгоритмов решения задач, характерны следующие признаки:

Развитые коммуникативные способности,

Умение решать сложные плохо формализуемые задачи,

Способность к самообучению,

Коммуникативные способности ИИС характеризуют способ взаимодействия (интерфейса) конечного пользователя с системой.

Сложные плохо формализуемые задачи - это задачи, которые требуют построения оригинального алгоритма решения в зависимости от конкретной ситуации, для которой могут быть характерны неопределенность и динамичность исходных данных и знаний.

    Модели представления знаний в ИИС, основанных на правилах.

В интеллектуальных информационных системах (ИИС) информационная модель ПО представлена совокупность двух разновидностей знаний – декларативные и процедурные. Декларативными принято называть знания о свойствах сущностей ПО и об отношениях между ними, а процедурными - знаний о допустимых правилах манипулирования такой информацией. Декларативные знания утверждают факт наличия определенных свойств сущностей, а процедурные знания определяют правила, методы и процедуры, с помощью которых можно осуществлять разнообразный анализ декларируемых знаний и на его основе синтезировать новые знания. К

примеру, применяя к определенной совокупности фактов некую последовательность известных правил, можно выяснить:

Как эта совокупность фактов была получена;

Почему были получены именно такие факты;

В каких условиях эти факты не имеют смысла;

Какие новые виды отношений свойственны сущностям ПО и их свойствам.

Центральным вопросом при создании базы знаний ИИС является выбор модели представления знаний (ПЗ) о свойствах сущностей ПО и отношениях (связях) между ними. Эта модель должна определять не только структуры информации различных уровней, но и обеспечить их максимальную адекватность (соответствие) структуре внутренних операций компьютера и структуре языков программирования, используемых для реализации модели. При этом, безусловно, нельзя оставлять без внимания и такое важное условие как максимальное соответствие модели ПЗ характеру (классу) задач, для решения которых создается система. Многие современные средства (языки) описания абстрактных и конкретных знаний и языки манипулирования такими знаниями ориентированы на создание производящих конструкций (процедур), реализуемых на компьютерах фон-неймановской архитектуры в виде последовательностей элементарных операций арифметики, алгебры исчисления предикатов и логики. Выбор способа построения таких производящих конструкций (процедур) определяет тип модели представления знаний. Представление знаний в такой модели должно быть понятным и однородным (одинаковым для любой категории отображаемых знаний) в конкретной ПО. Однородность представления знаний делает более технологичным управление логическим выводом при анализе и синтезе информации и управление знаниями (приобретение знаний и их оценку). Требование понятности и однородности представления знаний могут в некоторых случаях оказаться противоречивыми. И выход из такой ситуации бывает разным при решении простых или более сложных задач. В простых случаях (относительная однородность объектов ПО и типов связей между ними или относительно узкий класс решаемых задач) приемлемым может оказаться нестрогое («слабое») структурирование знаний. В сложных случаях (разнородность объектов, многообразие связей между ними, широкий класс решаемых задач) необходимо выбрать способ представления знаний, обеспечивающий их строгую («сильную») структуризацию и, если удастся, - модульную организацию модели представление знаний.

В современных ИИС применяются четыре типа моделей представления знаний:

Продукционная модель;

Формально-логическая модель;

Фреймовая модель;

Семантико-сетевая модель.

Заключение.

Таким образом, интеллектуальная информационная система - это компьютерная модель интеллектуальных возможностей человека в целенаправленном поиске, анализе и синтезе текущей информации об окружающей действительности для получения о ней новых знаний и решения на этой основе различных жизненно важных задач.

Интеллектуальная информационная система (ИИС) - это ИС, которая основана на концепции использования базы знаний для генерации алгоритмов решения экономических задач различных классов в зависимости от конкретных информационных потребностей пользователей.

Чаще всего интеллектуальные системы применяют для решения задач, основная сложность которых связана с использованием слабо-формализованных знаний специалистов – практиков и где смысловая или логическая обработка информации преобладает над вычислительной. Например, понимание естественного языка, принятия решений в сложной ситуации, управление диспетчерским пультами. Системы, ядром которых является база знаний или модель предметной области, описанная на языке сверхвысокого уровня, приближенном к собственному, называют интеллектуальными. Такой язык сверхвысокого уровня называют языком представления знаний.

Перспективным путём совершенствования и дальнейшего развития экспертных систем является создание инструментальных средств, базирующихся на совместном использовании различных моделей представления знаний: продукционных, семантических, фреймов и логических моделей. Все эти модели являются математическим средством построения перспективных интеллектуальных автоматизированных систем обработки информации и управления.

Список используемой литературы:

    Андрейчиков А.В., Андрейчикова О.Н. Интеллектуальные информационные системы. Уч.- М.: Финансы и статистика, 2004.- 424 с.

    Арсеньев С. Н., Шелобов С. И., Давыдова Т.Ю. «Принятие решений. Интегрированные информационные системы». Учебное пособие для ВУЗов. М.:Юнити-Дана, 2003.-270 с.

    Джексон П. Введение в экспертные системы/ Учебное пособие - М.: «Вильямс», 2001 – 624с.

    Леденева Т.М., Подвольный С.Л. Системы искусственного интеллекта и принятия решений: учебное пособие; Уфа: УГАТУ, 2005. – 246 с.

    Поспелов Г. С. «Искусственный интеллект. Новые информационные технологии» - М.: «Наука 2006г.»

    Системы управления базами данных и знаний. Справ. Изд./А.Н. Наумов, А.М. Вендров, В.К. Иванов и др.; Под ред. А.Н. Наумова. – Финансы и статистика, 2001.

В соответствии с перечисленными выше признаками ИИС делятся на (данная классификация – одна из возможных) (рис. 1):

    системы с коммутативными способностями (с интеллектуальным интерфейсом);

    экспертные системы (системы для решения сложных задач);

    самообучающиеся системы (системы, способные к самообучению);

    адаптивные системы (адаптивные информационные системы).

Рис. 1. Классификация интеллектуальных информационных систем по типам систем

Интеллектуальные базы данных отличаются от обычных баз данных возможностью выборки по запросу необходимой информации, которая может явно не храниться, а выводиться из имеющейся в базе данных.

Естественно-языковой интерфейс предполагает трансляцию естественно-языковых конструкций на внутримашинный уровень представления знаний. Для этого необходимо решать задачи морфологического, синтаксического и семантического анализа и синтеза высказываний на естественном языке. Так, морфологический анализ предполагает распознавание и проверку правильности написания слов по словарям, синтаксический контроль – разложение входных сообщений на отдельные компоненты (определение структуры) с проверкой соответствия грамматическим правилам внутреннего представления знаний и выявления недостающих частей и, наконец, семантический анализ – установление смысловой правильности синтаксических конструкций. Синтез высказываний решает обратную задачу преобразования внутреннего представления информации в естественно-языковое.

Естественно-языковой интерфейс используется для:

    доступа к интеллектуальным базам данных;

    контекстного поиска документальной текстовой информации;

    машинного перевода с иностранных языков.

Гипертекстовые системы предназначены для реализации поиска по ключевым словам в базах текстовой информации. Интеллектуальные гипертекстовые системы отличаются возможностью более сложной семантической организации ключевых слов, которая отражает различные смысловые отношения терминов. Таким образом, механизм поиска работает прежде всего с базой знаний ключевых слов, а уже затем непосредственно с текстом. В более широком плане сказанное распространяется и на поиск мультимедийной информации, включающей, помимо текстовой, и цифровую информацию.

Системы контекстной помощи можно рассматривать как частный случай интеллектуальных гипертекстовых и естественно-языковых систем. В отличие от обычных систем помощи, навязывающих пользователю схему поиска требуемой информации, в системах контекстной помощи пользователь описывает проблему (ситуацию), а система с помощью дополнительного диалога ее конкретизирует и сама выполняет поиск относящихся к ситуации рекомендаций. Такие системы относятся к классу систем распространения знаний (Knowledge Publishing) и создаются как приложение к системам документации (например, технической документации по эксплуатации товаров).

Системы когнитивной графики позволяют осуществлять интерфейс пользователя с ИИС с помощью графических образов, которые генерируются в соответствии с происходящими событиями. Такие системы используются в мониторинге и управлении оперативными процессами. Графические образы в наглядном и интегрированном виде описывают множество параметров изучаемой ситуации. Например, состояние сложного управляемого объекта отображается в виде человеческого лица, на котором каждая черта отвечает за какой-либо параметр, а общее выражение лица дает интегрированную характеристику ситуации. Системы когнитивной графики широко используются также в обучающих и тренажерных системах на основе использования принципов виртуальной реальности, когда графические образы моделируют ситуации, в которых обучаемому необходимо принимать решения и выполнять определенные действия.

Экспертные системы предназначены для решения задач на основе накапливаемой базы знаний, отражающей опыт работы экспертов в рассматриваемой проблемной области.

Многоагентные системы. Для таких динамических систем характерна интеграция в базе знаний нескольких разнородных источников знаний, обменивающихся между собой получаемыми результатами на динамической основе.

Для многоагентных систем характерны следующие особенности:

    проведение альтернативных рассуждений на основе использования различных источников знаний с механизмом устранения противоречий;

    распределенное решение проблем, которые разбиваются на параллельно решаемые подпроблемы, соответствующие самостоятельным источникам знаний;

    применение множества стратегий работы механизма вывода заключений в зависимости от типа решаемой проблемы;

    обработка больших массивов данных, содержащихся в базе данных;

    использование различных математических моделей и внешних процедур, хранимых в базе моделей;

    способность прерывания решения задач в связи с необходимостью получения дополнительных данных и знаний от пользователей, моделей, параллельно решаемых подпроблем.

В основе самообучающихся систем лежат методы автоматической классификации примеров ситуаций реальной практики.

Характерными признаками самообучающихся систем являются:

    самообучающиеся системы «с учителем», когда для каждого примера задается в явном виде значение признака его принадлежности некоторому классу ситуаций (классообразующего признака);

    самообучающиеся системы «без учителя», когда по степени близости значений признаков классификации система сама выделяет классы ситуаций.

Индуктивные системы используют обобщение примеров по принципу от частного к общему. Процесс классификации примеров осуществляется следующим образом:

      Выбирается признак классификации из множества заданных (либо последовательно, либо по какому-либо правилу, например в соответствии с максимальным числом получаемых подмножеств примеров).

      По значению выбранного признака множество примеров разбивается на подмножества.

      Выполняется проверка, принадлежит ли каждое образовавшееся подмножество примеров одному подклассу.

      Если какое-то подмножество примеров принадлежит одному подклассу, то есть у всех примеров подмножества совпадает значение классообразующего признака, то процесс классификации заканчивается (при этом остальные признаки классификации не рассматриваются).

      Для подмножеств примеров с несовпадающим значением классообразующего признака процесс классификации продолжается, начиная с пункта 1 (каждое подмножество примеров становится классифицируемым множеством).

Нейронные сети представляют собой устройства параллельных вычислений, состоящие из множества взаимодействующих простых процессоров. Каждый процессор такой сети имеет дело только с сигналами, которые он периодически получает, и сигналами, которые он периодически посылает другим процессорам.

В экспертных системах, основанных на прецедентах (аналогиях), база знаний содержит описания не обобщенных ситуаций, а собственно сами ситуации или прецеденты.

Поиск решения проблемы в экспертных системах, основанных на прецедентах, сводится к поиску по аналогии (то есть абдуктивный вывод от частного к частному).

В отличие от интеллектуальной базы данных, информационное хранилище представляет собой хранилище извлеченной значимой информации из оперативной базы данных, которое предназначено для оперативного ситуационного анализа данных (реализации OLAP-технологии).

Типичными задачами оперативного ситуационного анализа являются:

    определение профиля потребителей конкретных объектов хранения;

    предсказание изменений объектов хранения во времени;

    анализ зависимостей признаков ситуаций (корреляционный анализ).

Адаптивная информационная система – это информационная система, которая изменяет свою структуру в соответствии с изменением модели проблемной области.

При этом:

    адаптивная информационная система должна в каждый момент времени адекватно поддерживать организацию бизнес-процессов;

    адаптивная информационная система должна проводить адаптацию всякий раз, как возникает потребность в реорганизации бизнес-процессов;

    реконструкция информационной системы должна проводиться быстро и с минимальными затратами.

Ядром адаптивной информационной системы является постоянно развиваемая модель проблемной области (предприятия), поддерживаемая в специальной базе знаний – репозитории. На основе ядра осуществляется генерация или конфигурация программного обеспечения. Таким образом, проектирование и адаптация ИС сводится, прежде всего, к построению модели проблемной области и ее своевременной корректировке.

Так как нет общепринятого определения, четкую единую классификацию интеллектуальных информационных систем дать затруднительно. Например, если рассматривать интеллектуальные информационные системы с точки зрения решаемой задачи , то можно выделить системы управления и справочные системы, системы компьютерной лингвистики, системы распознавания, игровые системы и системы создания интеллектуальных информационных систем (рис. 2).

При этом системы могут решать не одну, а несколько задач или в процессе решения одной задачи решать и ряд других. Например, при обучении иностранному языку система может решать задачи распознавания речи обучаемого, тестировать, отвечать на вопросы, переводить тексты с одного языка на другой и поддерживать естественно-языковой интерфейс работы.

Рисунок 2 – Классификация интеллектуальных информационных систем по решаемым задачам

Если классифицировать интеллектуальные информационные системы по критерию «используемые методы» , то они делятся на жесткие, мягкие и гибридные (рис. 3).

Мягкие вычисления – это сложная компьютерная методология, основанная на нечеткой логике, генетических вычислениях, нейровычислениях и вероятностных вычислениях.Жесткие вычисления – традиционные компьютерные вычисления (не мягкие).Гибридные системы – системы, использующие более чем одну компьютерную технологию (в случае интеллектуальных систем – технологии искусственного интеллекта).

Рис. 3. Классификация интеллектуальных информационных систем по методам

Возможны и другие классификации, например, выделяют системы общего назначения и специализированные системы (рис. 4).

Рис. 4. Классификация интеллектуальных систем по назначению

Кроме того, эта схема отражает еще один вариант классификации по методам: системы, использующие методы представления знаний, самоорганизующиеся системы и системы, созданные с помощью эвристического программирования. Также в этой классификации системы генерации музыки отнесены к системам общения.

К интеллектуальным системам общего назначения относятся системы, которые не только исполняют заданные процедуры, но на основе метапроцедур поиска генерируют и исполняют процедуры решения новых конкретных задач.

Специализированные интеллектуальные системы выполняют решение фиксированного набора задач, предопределенного при проектировании системы.

Отсутствие четкой классификации также объясняется многообразием интеллектуальных задач и интеллектуальных методов, кроме того, искусственный интеллект – активно развивающаяся наука, в которой новые прикладные области осваиваются ежедневно.

Лекция

Тема: «Интеллектуальные технологии и системы»

План:

1. Понятие искусственного интеллекта. Интеллектуальные информационные

технологии.

2. Классификация интеллектуальных информационных систем.

3. Экспертные системы как основная разновидность интеллектуальных систем.

4. Искусственные нейронные сети.

Использование информационных технологий (ИТ) в различных сферах человеческой деятельности, рост объемов информации и необходимость оперативно реагировать в любых ситуациях потребовали поиска адекватных путей решения возникающих проблем. Самым эффективным из них является путь интеллектуализации информационных технологий.

Вопрос №1 Понятие искусственного интеллекта.

Интеллектуальные информационные технологии

Новая информационная технология основывается прежде всего на интеллектуальных технологиях и теории искусственного интеллекта.

Термин интеллект происходит от латинского intellectus - что означает ум, рассудок, разум; мыслительные способности человека.

Под искусственным интеллектом понимают способности компьютерных систем к интеллектуальным действиям. Чаще всего здесь имеются в виду способности, связанные с человеческим мышлением.

Искусственный интеллект - раздел информатики, связанный с разработкой интеллектуальных программ для компьютеров.

Искусственный интеллект (ИИ) – это научное направление, возникшее на стыке кибернетики, лингвистики, психологии и программирования.

Под интеллектуальными информационными технологиями понимают такие информационные технологии, в которых предусмотрены следующие возможности:

  • наличие баз знаний, отражающих опыт конкретных людей, групп, обществ, человечества в целом, при решении таких задач, как: принятие решений, проектирование, извлечение смысла, объяснение, обучение;
  • наличие моделей мышления на основе баз знаний: правил и логических выводов; аргументации и рассуждения; распознавания и классификации ситуаций; обобщения и понимания и т. п.;
  • способность формировать вполне четкие решения на основе нечетких, неполных, недоопределенных данных;
  • способность объяснять выводы и решения, то есть наличие механизма объяснений;
  • способность к обучению, переобучению и, следовательно, к развитию.

История интеллектуальных информационных технологий



Обратимся к истории развития ИИТ, которая ведет отсчет с 60-х годов прошлого века и включает несколько основных периодов.

  • 60-70-е годы. Это годы осознания возможностей искусственного интеллекта и формирования заказа на поддержку процессов принятия решений и управления.
  • 70-80-е годы. На этом этапе происходит осознание важности знаний для формирования адекватных решений; появляются ЭКСПЕРТНЫЕ СИСТЕМЫ.
  • с 80-х гг. по настоящее время. Появляются интегрированные (гибридные) модели представления знаний, сочетающие в себе следующие виды интеллекта: поисковый, вычислительный, логический и образный. Создание нейронных сетей

Особенность интеллектуальных информационных технологий (ИИТ) - их «универсальность». Они практически не имеют ограничений по применению в таких областях, как управление, проектирование, машинный перевод, диагностика, распознавание образов, синтез речи и т. д.

ИИТ также находят широкое применение для распределенного решения сложных задач, совместного проектирования изделий, построения виртуальных предприятий, моделирования больших производственных систем и электронной торговли, электронной разработки сложных компьютерных систем, управления системами знаний и информации и т. п. Еще одно эффективное применение - поиск информации в Internet и других глобальных сетях, ее структуризация и доставка заказчику.

Вопрос №2 Классификация интеллектуальных информационных систем

Для ИИС характерны следующие признаки:

Развитые коммуникативные способности (способ взаимодействия конечного пользователя с системой);

Умение решать сложные, плохо формализуемые задачи, которые требуют построения оригинального алгоритма решения в зависимости от конкретной ситуации, характеризующейся неопределенностью и динамичностью исходных данных и знаний;

Способность к самообучению, т.е. умение системы автоматически извлекать знания из накопленного опыта и применять их для решения задач;

Адаптивность – способность системы к развитию в соответствии с объективными изменениями области знаний.

Каждому из перечисленных признаков условно соответствует свой класс ИИС.

1. Системы с интеллектуальным интерфейсом (коммуникативные способности):

- Интеллектуальные базы данных . Позволяют в отличие от традиционных БД обеспечивать выборку необходимой информации, не присутствующей в явном виде, а выводимой из совокупности хранимых данных.

- Естественно-языковой интерфейс . Применяется для доступа к интеллектуальным базам данных, контекстного поиска документальной текстовой информации, голосового ввода команд в системах управления, машинного перевода с иностранных языков.

- Гипертекстовые системы . Используются для реализации поиска по ключевым словам в базах данных с текстовой информацией.

- Системы контекстной помощи . Относятся к классу систем распространения знания. Такие системы, как правило, являются приложениями к документации. В этих системах пользователь описывает проблему, а система на основе дополнительного диалога конкретизирует ее и выполняет поиск рекомендаций по данной проблеме.

- Системы когнитивной графики . Ориентированы на общение с пользователем ИИС посредством графических образов, которые генерируются в соответствии с изменением параметров моделируемых или наблюдаемых процессов. Применение когнитивной графики особенно актуально в системах мониторинга и оперативного управления, в обучающих и тренажерных системах, в оперативных системах принятия решений, работающих в режиме реального времени.

2. Экспертные системы (решение сложных плохо формализуемых задач). Применяются для решения неформализованных проблем, к которым относятся задачи, обладающие одной из следующих характеристик:

Задачи не могут быть представлены в числовой форме;

Исходные данные и знания о предметной области обладают неоднозначностью, неточностью, противоречивостью;

Цели нельзя выразить с помощью четко определенной целевой функции;

Не существует однозначного алгоритмического решения задачи;

Главное отличие ЭС и СИИ от систем обработки данных состоит в том, что в них используется символьный, а не числовой способ представления данных, а в качестве методов обработки информации применяются процедуры логического вывода и эвристического поиска решений.

Интеллектуальная система (ИС, intelligent system) - это техническая или программная система, способная решать задачи, традиционно считающиеся творческими, принадлежащие конкретной предметной области, знания о которой хранятся в памяти такой системы. Структура интеллектуальной системы включает три основных блока - базу знаний, решатель и интеллектуальный интерфейс.

Со всем процессом разработки интеллектуальных информационных систем в целом и ЭС в частности тесно связанаИнженерия знаний. Это методология ЭС, которая охватывает методы добычи, анализа и выражения в правилах знаний экспертов для формирования базы правил. Развитие ЭС создало инженерию знаний – процесс построения интеллектуальных систем. Она представляет собой совокупность моделей, методов и технических приемов, нацеленных на создание систем, которые предназначены для решения проблем с использованием знаний. Главными элементами инженерии знаний являются использование операций типа обобщение, генерация гипотез для индуктивных выводов, подготовка новых программ самими компьютерными программами и т.д. Слово engineering в английском означает искусная обработка предметов, изобретение или создание чего-либо. Следовательно, работу по оснащению программ специальными экспертными знаниями из проблемной области, выполняемую человеком, либо компьютером (программой), также можно назвать инженерией знаний.

Виды интеллектуальных систем:

1. Расчетно-логическая система

К расчетно-логическим системам относят системы, способные решать управленческие и проектные задачи по декларативным описаниям условий. При этом пользователь имеет возможность контролировать в режиме диалога все стадии вычислительного процесса. Данные системы способны автоматически строить математическую модель задачи и автоматически синтезировать вычислительные алгоритмы по формулировке задачи. Эти свойства реализуются благодаря наличию базы знаний в виде функциональной семантической сети и компонентов дедуктивного вывода и планирования

2. Рефлекторная интеллектуальная система

Рефлекторная система - это система, которая формирует вырабатываемые специальными алгоритмами ответные реакции на различные комбинации входных воздействий. Алгоритм обеспечивает выбор наиболее вероятной реакции интеллектуальной системы на множество входных воздействий, при известных вероятностях выбора реакции на каждое входное воздействие, а также на некоторые комбинации входных воздействий. Данная задача подобна той, которую реализуют перцептроны. Перцептро́н, или персептрон (perceptron) - математическая и компьютерная модель восприятия информации мозгом (кибернетическая модель мозга), предложенная Фрэнком Розенблаттом в 1957 г. и реализованная в виде электронной машины «Марк-1» в 1960 г. Перцептрон стал одной из первых моделей нейросетей, а «Марк-1» - первым в мире нейрокомпьютером. Несмотря на свою простоту, перцептрон способен обучаться и решать довольно сложные задачи. Рефлекторные программные системы применяются к следующим задачам: естественно-языковой доступ к базам данных; оценки инвестиционных предложений; оценки и прогнозирования влияния вредных веществ на здоровье населения; прогнозирования результатов спортивных игр.

3. Интеллектуальная информационная система

Интеллектуальная информационная система (ИИС, intelligent system) - система, основанная на знаниях.

4. Гибридная интеллектуальная система

Под гибридной интеллектуальной системой принято понимать систему, в которой для решения задачи используется более одного метода имитации интеллектуальной деятельности человека. Таким образом ГИС - это совокупность.